
1

Programming with
Java RMI

…an introduction...

CS 417
Distributed Systems

2

Paul Krzyzanowski • Distributed Systems

Java RMI
• Allows a method to be invoked that

resides on a different JVM:
– remote machine
– same machine, different JVM (different

address space)

• Object-oriented RPC

RMI: Remote Method Invocation
Java RMI is a mechanism to allow the invocation of methods that reside on different
Java Virtual Machines (JVMs). The JVMs may be on different machines or they
could be on the same machine. In either case, the method runs in a different address
space than the calling process.
Java RMI is an object-oriented remote procedure call mechanism.
It differs from CORBA:

+ CORBA is language/machine independent
- RMI was designed for Java running on a JVM

+ CORBA includes more mechanisms:
server application starting
managing persistent state
support for transactions

+ Java RMI does not have an Object Broker
It differs from Sun RPC and DCE RPC:

+ RMI is not language/machineindependent
+ RMI supports the concept of classes with methods within a class
+ RMI supports polymorphism

(different methods that share the same name but accept different parameters)

3

Paul Krzyzanowski • Distributed Systems

Participating processes
• Client

– process that is invoking a method on a remote object

• Server
– process that owns the remote object (local object to

the server)

• Object Registry
– name server that associates objects with names
– objects are registered
– URL namespace

rmi://hostname:port/pathname
e.g.: rmi://crapper.pk.org/MyServer

There are three entities involved in running a program that uses RMI:
client: this is the program that you write to access remote methods
server: this is the program that you write to implement the remote methods - clients
connect to the server and request that a method be executed. The remote methods to
the client are local methods to the server.

Object registry: this is a program that you use.
The object registry runs on a known port (1099 by default)
A server, upon starting, registers its objects with a textual name with the object

registry.
A client, before performing invoking a remote method, must first contact the

object registry to obtain access to the remote object.

4

Paul Krzyzanowski • Distributed Systems

Two kinds of classes
• Remote class (remote object)

– instances can be used remotely
– works like any other object locally
– in other address spaces, object is

referenced with an object handle
– if a remote object is passed as a parameter,

its handle is passed.

Two types of objects are useful when dealing with RMI.
A remote object is one whose instances can be used remotely. A handle to a remote
object identifies where that object is located and how to contact it remotely (via
rmi).
When used locally, it works like any other object.
When it is passed as a parameter, its handle is passed (as with ordinary java
objects).

5

Paul Krzyzanowski • Distributed Systems

Two kinds of classes
• Serializable class (serializable object)

– instances can be copied between address
spaces

– object that can be marshaled
– can be passed as a parameter or be a

return value to a remote object
• value of object is copied

– implements java.io.Serializable interface

A serializable object is one whose value can be marshaled. This means that the
contents of the object can be represented in a pointerless form as a bunch of bytes
and then reconstructed into their respective values as needed. This is useful, for
example, in saving the contents of an object into a file and then reading back that
object.
In the RMI case, it is useful if we want to pass an object as a parameter to a remote
method or receive a result from a remote method. In this case, we don’t want to pass
object handles, because the pointers will make no sense on a different JVM. If an
object is defined to implement java.io.Serializable, however, passing it as a
parameter will allow us to pass the value of the object (marshaled) rather than the
handle.

6

Paul Krzyzanowski • Distributed Systems

remote classes
• Remote class has two parts:

– interface definition
– class definition

• Remote interface
– must be public
– must extend java.rmi.Remote
– every method must declare that it throws

java.rmi.RemoteException
• Remote class

– implements Remote interface
– extends
java.rmi.server.UnicastRemoteObject

There are two parts to defining a remote class: its interface and the actual class
itself. The Remote Interface represents the type of an object handle and tells clients
how to invoke remote methods. The remote class defines those objects.

The interface definition:
- must be public
- must extend the interface java.rmi.Remote
- every method in the interface must declare that it thows

java.rmi.RemoteException
(but other exceptions may be thrown as well)

The Remote class:
- must implement a Remote interface
- should extend java.rmi.server.UnicastRemoteObject class
Objects of this class exist in the address space of the server and can be invoked

remotely. (there are other ways of defining a remote class - this is the easiest)
Objects in the remote class may have methods that are not in its remote interface.

However, these can only be invoked locally.

7

Paul Krzyzanowski • Distributed Systems

Sample program
• Client invokes a remote method with

strings as parameter
• Server returns a string containing the

reversed input string and a message

8

Paul Krzyzanowski • Distributed Systems

Define the remote interface
(HelloInterface.java)

import java.rmi.*;

public interface HelloInterface extends Remote {
public String say(String msg) throws RemoteException;

}

We define an interface for a remote class that includes one remote method: say
say accepts a String as an input parameter and returns a String as a result
Note that the interface extends Remote and that each method (there’s only one here)
throws RemoteException.
These classes are defined in the java.rmi package, so we import it.

9

Paul Krzyzanowski • Distributed Systems

Define the remote class (Hello.java)

import java.rmi.*;
import java.rmi.server.*;

public class Hello
extends UnicastRemoteObject
implements HelloInterface {

private String message;

public Hello(String msg) throws RemoteException {
message = msg;

}

public String say(String m) throws RemoteException {
// return the input message - reversed input plus our standard message
return new StringBuffer(m).reverse().toString() + "\n" + message;

}
}

The remote class defines two methods:

Hello is our constructor and will be used by the server to set define the standard
message that will always be sent back to the client.
say is a method that takes a string as the input. It returns a string containing the
input with the characters reversed followed by a newline followed by our standard
message (set in the constructor).
Note that:
- the class extends UnicastRemoteObject

this will allow the methods to be invoked remotely
- the class implements the interface we defined
- each method must throw RemoteException

because remote procedure calls might fail
- the say method accepts a String and returns a String. String is defined to be
Serializable. If you were to accept or return an object you defined, it would have to
be defined to implement Serializable.

10

Paul Krzyzanowski • Distributed Systems

The server (HelloServer.java)

import java.rmi.*;
import java.rmi.server.*;

public class HelloServer {
public static void main(String argv[]) {

if (System.getSecurityManager() == null)
System.setSecurityManager(new RMISecurityManager());

try {
// instantiate the service with the standard message & tell registry
Naming.rebind("Hello", new Hello("Hello, world!"));
System.out.println("Server is running...");

} catch(Exception e) {
System.out.println("Hello Server failed: " + e);

}
}

}

The server is a plain program that is responsible for:
1. Creating and installing a security manager. We do this with:

System.setSecurityManager(new RMISecurityManager());
The security manager makes sure that classes that get loaded do not perform
operations that they are not allowed to perform.
2. Registering at least one remote object with the object registry.

We do this with:
Naming.rebind(object_name, object);

where object_name is a String that names the remote object
and object is the remote object that we are registering.

All that our server does is:
set the security maanger
create the remote object
register it
print a message saying “Server is running…”

11

Paul Krzyzanowski • Distributed Systems

The client (HelloClient.java)

import java.rmi.*;

public class HelloClient {
public static void main(String argv[]) {

try {
if (args.length < 0) {

System.err.println(“usage: java HelloClient string …\n”);
System.exit(1);

}
HelloInterface hello = (HelloInterface)Naming.lookup("//localhost/Hello");
for (int i=0; i < args.length; ++I)

System.out.println(hello.say(args[i]));
} catch (Exception e) {

System.out.println(”Helloclient exception: " + e);
}

}
}

The client invokes the remote method.
To do this, the client must have a handle (reference) to the remote object.
The object registry allows the client to get this reference to a remote object.
To get the reference to the remote object, we need to know:
1. Internet name (or address) of machine that is running the object registry for
which the remote object is registered (can omit if localhost)
2. Port on which the object registry is running (can omit if it is 1099 - default)
3. Name of the object within the object registry.
The Naming.lookup method obtains an object handle from the object registry
running on localhost on the default port (we could have just looked up “Hello” in
this case).
The result of Naming.lookup must be cast to the type of the Remote Interface

The remote invocation of the object is the call to hello.say(“abc”). It returns a
String which we print. Remember again, that we can get a String only because
String is a Serializable class.

12

Paul Krzyzanowski • Distributed Systems

The policy (policy)

grant {
permission java.security.AllPermission;

}

The policy file controls which clients have which permissions. The one in this
example grants everyone global permission (not a good one to use in a production
environment!).
The policy file is not needed when programming with JDK < 1.2
The Java security manager contains a number of check methods (e.g
checkConnect). In the default manager, these are implemented by calling a
checkPermission method. The type of permission is specified by a parameter of
type Permission that is passed to checkPermission. The method checks whether
the permission is implied by a list of granted permissions.
To specify or change the security policy, there is a class named Policy. A program
can get its policy by calling Policy.getPolicy() or set it (if it has permissions) with
Policy.setPolicy(). The security policy is typically specified by a policy
configuration file which is reaad when the program starts.

13

Paul Krzyzanowski • Distributed Systems

Compile
• Compile the interface and classes:

javac HelloInterface.java Hello.java
javac HelloServer.java HelloClient.java

• Create the class files for stubs:
rmic Hello

• rmic creates:
Hello_Skel.class skeleton - server-side stub

Hello_Stub.class client-site stub

We first compile the remote interface and classes using javac. Then we generate the
class files for the client and server stubs with the rmi compiler:

rmic Hello
This produces two class files:

Hello_Skel.class is the skeleton (a name for a server-stub)
Hello_Stub.class is the client stub function

14

Paul Krzyzanowski • Distributed Systems

Run
• Start the object registry (in the background):

rmiregistry &
• Start the server (in the background):

java -Djava.security.policy=policy
HelloServer &

• Run the client:
java HelloClient testing abcdefgh

• See the output:
gnitset
Hello, world!
hgfedcba
Hello, world!

Now we’re ready to run the program.
If the registry is not running, it must be started. Otherwise the server will not be able
to register the object and the client will not be able to look it up.
We start it in the background with:

rmiregistry &
If we wanted it to listen on a different port than 1099, we would specify the port
number on the command line. For example, to listen on port 5511:

rmiregistry 5511 &
Next we start the server (also in the background) by running:

java -Djava.security.policy=policy HelloServer &
where the -D flag sets the name of the file containing our security policy (our file is
named policy and is in the current directory).
Finally, we can run the client with:

java HelloClient testing abcdefg

NOTE: be sure to kill the registry and server processes when you’re done.

That’s it!

15

RMI
A bit of the internals

16

Paul Krzyzanowski • Distributed Systems

Interfaces
• Interfaces define behavior
• Classes define implementation
• RMI: two classes support the same

interface
– client stub
– server implementation

When programming for RMI, we define an Interface: interfaces define the behavior
- the API - of an underlying implementation. The classes themselves define the
implementation.
In the case of RMI, two classes will end up supporting the same interface:
1. The client stub, generated via rmic, provides a “proxy” to the server
2.. The server contains the actual code for the remote method.

17

Paul Krzyzanowski • Distributed Systems

Three-layer architecture

client programclient program server programserver program

stub function(s)stub function(s) skeleton
(server-stub)
skeleton

(server-stub)

remote reference layerremote reference layer remote reference layerremote reference layer

transport layertransport layer transport layertransport layer
marshal stream

RMI consists of three layers:
stubs & skeletons: this layer intercepts method calls made by the client to the
interface reference and redirects them to a remote RMI service

remote reference layer: this layer understands how to interpret and manage
references made from clients to the remote service objects.
In JDK 1.1, this layer connects clients to remote service objects that are running and
exported on a server. The connection is a one-to-one (unicast) link.
In the Java 2 SDK, this layer was enhanced to support the activation of dormant
remote service objects via Remote Object Activation. When a method call is made
to the proxy for an activatable object, RMI determines if the remote service
implementation object is dormant. If it is dormant, RMI will instantiate the object
and restore its state from a disk file. Once an activatable object is in memory, it
behaves just like JDK 1.1 remote service implementation objects. `
transport layer: based on TCP/IP. Provides connectivity via sockets. An internal
protocol, the Java Remote Method Protocol (JRMP) is used for communication.

18

Paul Krzyzanowski • Distributed Systems

Server - 1
• Server creates an instance of the server

object
– extends UnicastRemoteObject
– TCP socket is bound to an arbitrary port number
– thread is created which listens for connections on

that socket

• Server registers object
– RMI registry is an RMI server (accepts RMI

calls)
– hands the registry the client stub for that

server object
• contains information needed to call back to the

server
(hostname, port)

The server has to create an instance of the server object
This object is defined to extend UnicastRemoteObject
The UnicastRemoteObject constructor:

- creates a TCP socket bound to an arbitrary port and set for listening
- creates a new thread that will listen for connections on that socket

The server then registers the object with the registry
- the registration process involves the server sending the registry the

client stub for that server object. The stub will contain information
needed to access the server (such as hostname, port) Note: the stub data is sent -

not the code for the stub.
Java RMI does support the loading of remote stubs via the java.rmi.server.codebase
property
- the RMI registry itself is an RMI server.

19

Paul Krzyzanowski • Distributed Systems

Client - 1
• Client obtains stub from registry
• Client issues a remote method invocation

– stub class creates a RemoteCall
• opens socket to the server on port specified in the stub
• sends RMI header information

– stub marshals arguments over the network
connection

• uses methods on RemoteCall to obtain a subclass of
ObjectOutputStream

• knows how to deal with objects that extend
java.rmi.Remote

– serializes Java objects over socket

– stub calls RemoteCall.executeCall()
• causes the remote method invocation to take place

The purpose of the RMI registry is to hold remote object stubs and send them to
clients upon request.
The client connects to the registry and requests an RMI stub by name. The registry
returns the appropriate stub.
The client then issues a remote method invocation on that object. The first step is
for the stub to create a RemoteCall. This will cause a TCP socket connection to be
created to the port specified in the stub and RMI header information to be sent to the
server.
The client stub then marshals the arguments over the RMI connection using
methods in the RemoteCall to obtain an output stream which is a subclass of
ObjectOutputStream that knows how to deal with serializing Java objects over the
socket.
The stub function then calls RemoteCall.executeCall() to actually have the remote
method invocation take place

20

Paul Krzyzanowski • Distributed Systems

Server - 2
• Server accepts connection from client
• Creates a new thread to deal with the

incoming request
• Reads header information

– creates RemoteCall to deal with unmarshaling RMI
arguments

• Calls dispatch method of the server-side
stub (skeleton)
– calls appropriate method on the object
– sends result to network connection via RemoteCall

interface
– if server threw exception, that is marshaled instead of

a return value

Back at the server…
the server accepted the connection from the client
It forked off a new thread to process the request. The original thread is still listening on
the original socket so that other rmi calls can be made.
It reads the header information sent when the client established a RemoteCall and
creates its own RemoteCall object to deal with unmarshaling the data it will receive
from the client.
It then calls a dispatch method found in the server-side stub (the skeleton generated by
rmic). This method causes a call to the appropriate method on the obect. That method
finishes and the return result is send over the network connection via the RemoteCall
interface (just like the client sent the parameters).
If an exception was thrown by the server code, instead of a return value, the exception is
marshaled and sent back to the client.

21

Paul Krzyzanowski • Distributed Systems

Client - 2
• The client unmarshals the return value

of the RMI
– using RemoteCall

• value is returned from the stub back to
the client code
– or an exception is thrown to the client if the

return was an exception

The client unmarshals the return value of the remote method invocation.
It uses the same RemoteCall interface that it used to marshal the incoming
parameters.
If the return is an exception, then the stub causes an exception to be thrown back to
the client. If the return is a value, then the stub returns the value to the invoking
client code.

		2002-02-27T00:39:32-0500
	Paul Krzyzanowski

