
1

Distributed
Shared Memory

Paul Krzyzanowski • Distributed Systems

Motivation

SMP systems

– Run parts of a program in parallel

– Share single address space

• Share data in that space

– Use threads for parallelism

– Use synchronization primitives to prevent
race conditions

Can we achieve this with multicomputers?

– All communication and synchronization must
be done with messages

Paul Krzyzanowski • Distributed Systems

DSM

Goal: allow networked computers to
share memory

• How do you make a distributed
memory system appear local?

• Physical memory on each node used to

hold pages of shared virtual address
space

Paul Krzyzanowski • Distributed Systems

Take advantage of the MMU

• Page table entry for a page is valid if
the page is held (cached) locally

• Attempt to access non-local page leads

to a page fault

• Page fault handler

– Invokes DSM protocol to handle fault

– Fault handler brings page from remote node

• Operations are transparent to
programmer

– DSM looks like any other virtual memory

system

Paul Krzyzanowski • Distributed Systems

Simplest design

Each page of virtual address space exists
on only one machine at a time

-no caching

Paul Krzyzanowski • Distributed Systems

Simplest design

On page fault:

– Consult central server to find which
machine is currently holding the page

– Directory

Request the page from the current owner

– Current owner invalidates PTE

– Sends page contents

– Recipient allocates frame, reads page, sets
PTE

– Informs directory of new location

2

Paul Krzyzanowski • Distributed Systems

Problem

Directory becomes a bottleneck

– All page query requests must go to this server

Solution

– Distributed directory

– Distribute among all processors

– Each node responsible for portion of address
space

– Find responsible processor:

• hash(page#)mod processors

Paul Krzyzanowski • Distributed Systems

P0

Distributed Directory

……

P2000C

P10008

P10004

P30000

LocationPage

P2

……

--000E

P0000A

P10006

P30002

LocationPage P3

……

--000F

P2000B

P10007

P30003

LocationPage

P1

……

P2000D

P00009

P10005

P30001

LocationPage

Paul Krzyzanowski • Distributed Systems

Design Considerations: granularity

• Memory blocks are typically a multiple
of a node’s page size

– To integrate with VM system

• Large pages are good

– Cost of migration amortized over many

localized accesses

• BUT

– Increases chances that multiple objects
reside in one page

• Thrashing

• False sharing

Paul Krzyzanowski • Distributed Systems

Design Considerations: replication

• What if we allow copies of shared
pages on multiple nodes?

• Replication (caching) reduces average

cost of read operations

– Simultaneous reads can be executed locally

across hosts

• Write operations become more
expensive

– Cached copies need to be invalidated or

updated

• Worthwhile if reads/writes is high

Paul Krzyzanowski • Distributed Systems

Replication

Multiple readers, single writer

– One host can be granted a read-write copy

– Or multiple hosts granted read-only copies

Paul Krzyzanowski • Distributed Systems

Replication

Read operation:

If block not local

• Acquire read-only copy of the block

• Set access writes to read-only on any writeable
copy on other nodes

Write operation:

If block not local or no write permission

• Revoke write permission from other writable
copy (if exists)

• Get copy of block from owner (if needed)

• Invalidate all copies of block at other nodes

3

Paul Krzyzanowski • Distributed Systems

Full replication

Extend model

– Multiple hosts have read/write access

– Need multiple-readers, multiple-
writers protocol

– Access to shared data must be controlled
to maintain consistency

Paul Krzyzanowski • Distributed Systems

Dealing with replication

• Keep track of copies of the page

– Directory with single node per page not
enough

– Maintain copyset

• Set of all systems that requested copies

• Request for page copy

– Add requestor to copyset

– Send page contents

• Request to invalidate page

– Issue invalidation requests to all nodes in
copyset and wait for acknowledgements

Paul Krzyzanowski • Distributed Systems

Consistency Model

Definition of when modifications to data
may be seen at a given processor

Defines how memory will appear to a
programmer

– Places restrictions on what values can be

returned by a read of a memory location

Paul Krzyzanowski • Distributed Systems

Consistency Model

Must be well-understood

– Determines how a programmer reasons
about the correctness of a program

– Determines what hardware and compiler
optimizations may take place

Paul Krzyzanowski • Distributed Systems

Sequential Semantics

Provided by most (uniprocessor)
programming languages/systems

Program order

The result of any execution is the same

as if the operations of all processors were

executed in some sequential order and

the operations of each individual

processor appear in this sequence in the

order specified by the program.
 Lamport

Paul Krzyzanowski • Distributed Systems

Sequential Semantics

Requirements

– All memory operations must execute one at
a time

– All operations of a single processor appear to
execute in program order

– Interleaving among processors is OK

4

Paul Krzyzanowski • Distributed Systems

Sequential semantics

P0

P1

P2 P3

P4

memory

Paul Krzyzanowski • Distributed Systems

Achieving sequential semantics

Illusion is efficiently supported in
uniprocessor systems

– Execute operations in program order when

they are to the same location or when one
controls the execution of another

– Otherwise, compiler or hardware can
reorder

Compiler:

– Register allocation, code motion, loop
transformation, …

Hardware:

– Pipelining, multiple issue, …

Paul Krzyzanowski • Distributed Systems

Achieving sequential consistency

Processor must ensure that the previous
memory operation is complete before

proceeding with the next one

– Program order requirement

– Determining completion of write operations

• get acknowledgement from memory system

– If caching used

• Write operation must invalidate or update
messages to all cached copies.

• ALL these messages must be acknowledged

Paul Krzyzanowski • Distributed Systems

Achieving sequential consistency

All writes to the same location must be
visible in the same order by all processes

– Write atomicity requirement

– Value of a write will not be returned by a

read until all updates/invalidates are
acknowledged

• hold off on read requests until write is complete

– Totally ordered multicast

Paul Krzyzanowski • Distributed Systems

Improving performance

Break rules to achieve better performance

– Compiler and/or programmer should know
what’s going on!

Relaxing sequential consistency

– Weak consistency

Paul Krzyzanowski • Distributed Systems

Relaxed (weak) consistency

Relax program order between all
operations to memory

– Read/writes to different memory operations
can be reordered

Consider:
– Operation in critical section (shared)

– One process reading/writing

– Nobody else accessing until process leaves
critical section

No need to propagate writes sequentially
or at all until process leaves critical
section

5

Paul Krzyzanowski • Distributed Systems

Synchronization variable (barrier)

• Operation for synchronizing memory

• All local writes get propagated

• All remote writes are brought in to the

local processor

• Block until memory synchronized

Paul Krzyzanowski • Distributed Systems

Consistency guarantee

• Access to synchronization variables are
sequentially consistent

– All processes see them in the same order

• No access to a synchronization variable

can be performed until all previous

writes have completed

• No read or write permitted until all

previous accesses to synchronization
variables are performed

– Memory is updated

Paul Krzyzanowski • Distributed Systems

Problems with weak consistency

• Inefficiency

– Synchronization

• Because process finished memory accesses
or is about to start?

• Systems must make sure

– All locally-initiated writes have completed

– All remote writes have been acquired

Paul Krzyzanowski • Distributed Systems

Can we do better?

Separate synchronization into two stages:

– 1. acquire access

Obtain valid copies of pages

– 2. release access

Send invalidations for shared pages that were
modified locally to nodes that have copies.

acquire(R) // start of critical section

Do stuff
release(R) // end of critical section

Eager Release Consistency (ERC)

Paul Krzyzanowski • Distributed Systems

Let’s get lazy
Release requires

– Sending invalidations to copyset nodes

– And waiting for all to acknowledge

Delay this process

• On release:
– Send invalidation only to directory

• On acquire:
– Check with directory to see whether it needs a new

copy

• Chances are not every node will need to do an acquire

Reduces message traffic on releases

Lazy Release Consistency (LRC)

Paul Krzyzanowski • Distributed Systems

Finer granularity

Release consistency

– Synchronizes all data

– No relation between lock and data

Use object granularity instead of page

granularity

– Each variable or group of variables can have a

synchronization variable

– Propagate only writes performed in those sections

– Cannot rely on OS and MMU anymore

• Need smart compilers

Entry Consistency

6

Paul Krzyzanowski • Distributed Systems

How do you propagate changes?

• Send entire page

– Easiest, but may be a lot of data

• Send differences

– Local system must save original and
compute differences

Paul Krzyzanowski • Distributed Systems

Home-based algorithms

Home-based

– A node (usually first writer) is chosen to be
the home of the page

– On write, a non-home node will send
changes to the home node.

• Other cached copies invalidated

– On read, a non-home node will get changes
(or page) from home node

Non-home-based

– Node will always contact the directory to

find the current owner (latest copy) and
obtain page from there

Paul Krzyzanowski • Distributed Systems

Home-based Lazy Release Consistency

• At release

– Diffs are computed

– Sent to owner (home node)

• Home node:

– Applies diffs as soon as they arrive

• At acquire

– Node requests updated page from the
home node

The end.

	DSM goal
	mechanism
	Basic design
	Distributed directory
	False sharing
	Adding replication
	Consistency model
	Sequential semantics
	Requirements for achieving sequential consistency
	Weak consistency
	Eager release consistency
	Lazy release consistency
	Entry consistency
	Home-based algorithms

