
1

CS 417

Concurrency control

CS 417
Distributed Systems

2

CS 417Paul Krzyzanowski 2

Schedules

• Transactions must have scheduled so that data is serially
equivalent

• Use mutual exclusion to ensure that only one transaction
executes at a time

• or…
• Allow multiple transactions to execute concurrently

– but ensure serializability

• concurrency control

One of the important transactions is that their effect on shared data is serially
equivalent. This means that any data that is touched by a set of transactions must be
in such a state that the results could have been obtained if all the transactions
executed serially (one after another) in some order (it does not matter which). What
is invalid, is for the data to be in some form that cannot be the result of serial
execution (e.g. two transactions modifying data concurrently).
One easy way of achieving this guarantee is to ensure that only one transaction
executes at a time. We can accomplish this by using mutual exclusion and having a
“transaction” resource that each transaction must have access to.
However, this is usually overkill and does not allow us to take advantage of the
concurrency that we may get in distributed systems (for instance, it is obviously
overkill if two transactions don’t even access the same data).
What we would like to do is allow multiple transactions to execute simultaneously
but keep them out of each other’s way and ensure serializability.
This is called concurrency control.

3

CS 417Paul Krzyzanowski 3

Locking

• Serialize with exclusive locks on a resource
– lock data that is used by the transaction
– lock manager

• Conflicting operations of two transactions must be
executed in the same order
– transaction not allowed new locks after it has released a lock

• Two-phase locking
– phase 1: growing phase: acquire locks
– phase 2: shrinking phase: release locks

We can use exclusive locks on a resource to serialize execution of transactions that
share resources. A transaction locks an object that it is about to use. If another
transaction requests the same object and it is locked, the transaction must wait until
the object is unlocked.
To implement this in a distributed system, we rely on a lock manager - a server that
issues locks on resources. This is exactly the same as a centralized mutual exclusion
server: a client can request a lock and then send a message releasing a lock on a
resource (by resource in this context, we mean some specific block of data that may
be read or written).
One thing to watch out for, is that we still need to preserve serial execution: if two
transactions are accessing the same set of objects, the results must be the same as if
the transactions executed in some order (transaction A cannot modify some data
while transaction B modifies some other data and then transaction A accesses that
modified data -- this is concurrent modification).
To ensure serial ordering on resource access, we impose a restriction that states that
a transaction is not allowed to get any new locks after it has released a lock. This is
known as two-phase locking. The first phase of the transaction is a growing phase
in which it acquires the locks it needs. The second phase is the shrinking phase
where locks are released.

4

CS 417Paul Krzyzanowski 4

Strict two-phase locking

• If a transaction aborts
– any other transactions that have accessed data from released locks

(uncommitted data) have to be aborted
– cascading aborts

• Avoid this situation:
– transaction holds all locks until it commits or aborts

• strict two-phase locking

A problem with two-phase locking is that if a transaction aborts, some other
transaction may have already used data from an object that the aborted transaction
modified and then unlocked. If this happens, any such transactions will also have to
be aborted. This situation is known as cascading aborts.
To avoid this, we can strengthen our locking by requiring that a transaction will
hold all its locks to the very end: until it commits or aborts rather than releasing the
lock when the object is no longer needed.
This is known as strict two-phase locking.

5

CS 417Paul Krzyzanowski 5

Locking granularity

• Typically there will be many objects in a system
– a typical transaction will access only a few of them (and is unlikely

to clash with other transactions)

• Granularity of locking affects concurrency
– smaller amount locked → higher concurrency

A typical system will have many objects and typically a transaction will access only
a small amount of data at any given time (and it will frequently be the case that a
transaction will not clash with other transactions).
The granularity of locking affects the amount of concurrency we can achieve. If we
can have a smaller granularity (lock smaller objects or pieces of objects) then we
can generally achieve higher concurrency.
For example, suppose that all of a bank’s customers are locked for any transaction
that needs to modify a single customer datum: concurrency is severely limited
because any other transactions that need to access any customer data will be
blocked. If, however, we use a customer record as the granularity of locking,
transactions that access different customer records will be capable of running
concurrently.

6

CS 417Paul Krzyzanowski 6

Multiple readers/single writer
• Improve concurrency by supporting multiple readers

– there is no problem with multiple transactions reading data from the same
object

– only one transaction should be able to write to an object
• and no other transactions should read in this case

• Two locks: read locks and write locks
– set a read lock before doing a read on an object
– set a write lock before doing a write on an object
– block (wait) if transaction cannot get the lock

• If a transaction has
– no locks for an object: another transaction may obtain a read or write lock
– a read lock for an object: another transaction may obtain a read but wait

for write lock
– a write lock for an object: another transaction will have to wait for a read

or a write lock

There is no harm having multiple transactions read from the same object as long as
it has not been modified by any of the transactions. This way we can increase
concurrency by having multiple transactions run concurrently if they are only
reading from an object.
However, only one transaction should be allowed to write to an object.
Once a transaction has modified an object, no other transactions should be allowed
to read or write the modified object.
To support this, we now use two locks: read locks and write locks. Read locks are
also known as shared locks (since they can be shared by multiple transactions)
If a transaction needs to read an object, it will request a read lock from the lock
manager.
If a transaction needs to modify an object, it will request a write lock from the lock
manager.
If the lock manager cannot grant a lock, then the transaction will wait until it can
get the lock (after the transaction with the lock committed or aborted).
To summarize lock granting:
If a transaction has: another transaction may obtain:
 no locks read lock or write lock
 read lock read lock (wait for write lock)
 write lock wait for read or write locks

7

CS 417Paul Krzyzanowski 7

Increasing concurrency: two-version locking

• Transaction can write tentative versions of objects
– others read from the committed (original) version

• Read operations wait if another transaction is committing
the same object

• Allows for more concurrency than read-write locks
– writing transactions risk waiting or rejection when the commit
– transactions cannot commit if other uncompleted transactions have

read the objects
– these transactions must wait until the reading transactions have

committed

Two-version locking is an optimistic concurrency control scheme that allows one
transaction to write tentative versions of objects while other transactions read from
committed versions of the same objects.
Read operations only wait if another transaction is currently committing the same
object.
This scheme allows more concurrency than read-write locks, but writing
transactions risk waiting (or rejection) when they attempt to commit.
Transactions cannot commit their write operations immediately if other
uncommitted transactions have read the same objects. Transactions that request to
commit in this situation have to wait until the reading transactions have completed.

8

CS 417Paul Krzyzanowski 8

Two-version locking

• Three types of locks: read lock, write lock, commit lock
– transaction cannot get a read or write lock if there is a commit lock

• When the transaction coordinator receives a request to
commit
– converts all that transaction’s write locks into commit locks
– If any objects have outstanding read locks, transaction must wait

until the transactions that set these locks have completed and locks
are released

• Compare with read/write locks:
– read operations delayed only while transactions are committed
– read operations of one transaction can cause delay in the

committing of other transactions

The two-version locking scheme requires three types of locks: read, write, and
commit locks. Before an object is read, a transaction must obtain a read lock.
Before an object is written, the transaction must obtain a write lock (same as with
two-phase locking). Neither of these locks will be granted if there is a commit lock
on the object.
When the transaction is ready to commit:
- all of the transaction’s write locks are changed to commit locks
- if any objects used by the transaction have outstanding read locks, the transaction
must wait until the transactions that set these locks have completed and the locks
are released.
If we compare the performance difference between two-version locking and strict
two-phase locking (read/write locks):
- read operations in two-version locking are delayed only while transactions are
being committed rather than during the entire execution of transactions (usually the
commit protocol takes far less time than the time to perform the transaction)
- but… read operations of one transaction can cause a delay in the committing of
other transactions.

9

CS 417Paul Krzyzanowski 9

Problems with locking

• Locks have an overhead: maintenance, checking
• Locks can result in deadlock
• Locks may reduce concurrency by having transactions

hold the locks until the transaction commits (strict two-
phase locking)

Locks are not without drawbacks
Locks have an overhead associated with them: a lock manager is needed to keep
track of locks - there is overhead in requesting them. Even read-only operations
must still request locks.
The use of locks can result in deadlock. We need to have software in place to detect
or avoid deadlock.
Locks can decrease the potential concurrency in a system by having a transaction
hold locks for the duration of the transaction (until a commit or abort).

10

CS 417Paul Krzyzanowski 10

Optimistic concurrency control

• In most applications the chance of two transactions
accessing the same object is low

• Allow transactions to proceed without obtaining locks
• Check for conflicts at commit time

– if there is a conflict abort and restart some transaction

• Phases:
– working phase
– validation phase
– update phase

King and Robinson (1981) proposed an alternative technique for achieving
concurrency control, called optimistic concurrency control.
This is based on the observation that, in most applications, the chance of two
transactions accessing the same object is low.
We will allow transactions to proceed as if there were no possibility of conflict with
other transactions: a transaction does not have to obtain or check for locks.
This is the working phase. Each transaction has a tentative version (private
workspace) of the objects it updates - copy of the most recently committed version.
Write operations record new values as tentative values.
Before a transaction can commit, a validation is performed on all the data items to
see whether the data conflicts with operations of other transactions. This is the
validation phase.
If the validation fails, then the transaction will have to be aborted and restarted later.
If the transaction succeeds, then the changes in the tentative version are made
permanent. This is the update phase.
Optimistic control is deadlock free and allows for maximum parallelism (at the
expense of possibly restarting transactions)

11

CS 417Paul Krzyzanowski 11

Timestamp ordering

• Assign unique timestamp to a transaction when it begins
• Each object has a read and write timestamp associated

with it
– which committed transaction last read the object
– which committed transaction last wrote the object

• Good ordering:
– object’s read and write timestamps will be older than current

transaction if it wants to write an object
– object’s write timestamps will be older than current transaction if it

wants to read an object

• Abort and restart transaction for improper ordering

Another approach to concurrency control was presented by Reed in 1983. This is
called timestamp ordering.
Each transaction is assigned a unique timestamp when it begins (can be from a
physical or logical clock).
Each object in the system has a read and write timestamp associated with it (two
timestamps per object). The read timestamp is the timestamp of the last committed
transaction that read the object. The write timestamp is the timestamp of the last
committed transaction that modified the object (note - the timestamps are obtained
from the transaction timestamp - the start of that transaction)
The rule of timestamp ordering is:
- if a transaction wants to write an object, it compares its own timestamp with the
object’s read and write timestamps. If the object’s timestamps are older, then the
ordering is good.
- if a transaction wants to read an object, it compares its own timestamp with the
object’s write timestamp. If the object’s write timestamp is older than the current
transaction, then the ordering is good.
If a transaction attempts to access an object and does not detect proper ordering, the
transaction is aborted and restarted (improper ordering means that a newer
transaction came in and modified data before the older one could access the data or
read data that the older one wants to modify).

