
version 1.0 ©1998 Paul Krzyzanowski 1

C Programming Style

Paul Krzyzanowski

Introduction
The past several years of teaching computer science courses to classes consisting largely of juniors,

seniors, and graduate students have forced me to look at hundreds of samples of student code. Since most
of this code was written for programming assignments, I must assume that the submitted assignment was a
student’s best effort. Many of the assignments “worked” in that they performed the task requested by the
assignment. A surprising number of submissions did not. The assignments that worked were generally
unforgiving of improper input data and often core dumped when presented with such data.

Looking at the source code, I often saw a complete absence of anything that may resemble style.
Less than one percent of larger programs were ever broken up into multiple files. Worse yet, most students
were reluctant to ever split their algorithm into several functions; modular decomposition seems to be
largely unknown.

The purpose of this essay is to provide opinions on programming style. You may agree with some
things that I have to say and disagree with others, but my goal is to encourage you to think about the style
of your program.

This essay is influenced by Rob Pike’s Notes on Programming in C and Kernighan and Plauger’s
The Elements of Programming Style. It is also influenced by the hundreds or thousands of programs I’ve
had to look at, work with, or write over the past seventeen or so years.

Strive for clarity
Above all else, try to keep your programs simple and clear. This is easier said than done, especially

if you have not seen many programs or have not written many yourself. It is easy to get immersed in a
programming project and maintain a large amount of mental state while programming. During this time, the
meaning of every variable and purpose of every function is clear. This mental model erodes rather quickly
once the project is completed. Will the functions, data structures, and variable names still make sense to
you in the future? More importantly perhaps, will they make sense to someone else who has to figure out
your program and possibly modify it?

Don’t over-comment
There is a style of programming that believes that every line of source code should have a comment

associated with it. This is simply nonsense. When programming, you should assume that your program will
be read in the future by someone versed in the language and basic algorithms. There is no need to explain
the language syntax or basic algorithms. If you use good, clear variable and function naming and structure
your code aesthetically, a programmer should have no trouble reading your code. Comments often get in
the way of readability, particularly if the occupy lines between code. Comments that merely paraphrase
code are not of much use. The classic example is:

i = i + 1; /* add one to i */

Even more complex code segments are not necessarily worthy of comments:

for (s=buf; *s && (*s != '@'); ++s) /* search for the first @ /
;

If your code is so obscure that it needs a comment to be understood, it may be worth thinking about
rewriting it. Comments also suffer from obsolescence. Code may evolve, but the comments are often not
updated.

Now that comments have been put down, it’s time to defend them. Your program should have
comments. It is useful to explain global variables, structures, and data types. Comments are also useful in

C Programming Style

©1998 Paul Krzyzanowski 2

introducing a function, particularly one whose purpose isn’t immediately obvious from its name.
Introductory comments should also serve to document any side-effects produced by the function.
Comments on central data structures are generally more useful than comments on algorithms.

Write your program from the top down
Recall that you’re assuming your program will be read by someone. It makes logical sense for the

main functions to appear first and support functions to appear later. A programmer can easily get to the
core algorithm and read on further if necessary to get the details. The opposite method (and one generally
encouraged by the Pascal school) forces the programmer to have to wade through the details firstt.

Choose variable names sensibly
Daniel D. McCracken’s 1961 a guide to FORTRAN programming has this to say about variable

names:
The name of a fixed point variable is one to six digits or letters, of which the first is I, J, K,
L, M, or N. Examples of acceptable names of fixed point variables: I, KLM, MATRIX,
L123, I6M2K.

Luckily, those days are behind us. Unfortunately, we see more and more code that looks like1:

DWORD __stdcall OnW32DeviceIoControl(PDIOCPARAMETERS p) {
switch (p->dwIoControlCode) {

case DIOC_GETVERSION:
return 0;

...
case 1:

if (!p->lpvOutBuffer || p->cbOutBuffer < 2)
return ERROR_INVALID_PARAMETER;

(WORD)p->lpvOutBuffer) = 0x0100;
if (p->lpcbBytesReturned)

*(PDWORD)(p->lpcbBytesReturned) = 2;
return 0;

...
}

When choosing a variable name, length does not necessarily improve clarity (buf is no less clear
than buffer , maxaddr is no less clear than MaximumAddress). Wisely chosen variable names lead to
self-documenting code. Long names often do more harm than good by obscuring the algorithm in which
they are used. Convention can play a large part in choosing sensible variable names. Long before
computers, mathematicians used conventions such as i, j, and k for indices. In C programming, the variable
names s and t are often used for character pointers in library functions that operate on generic strings.
Obeying conventions such as these helps keep your code concise and clear. However, variables that
actually do refer to something (rather than serving as indices or scanning pointers) should have sensible
names that represent their function. Rob Pike advocates longer variable names in cases there is little context
around them, such as global variables and shorter names when there is a lot of context to fill in the
meaning.

For one programming assignment, a number of students had variables of the form:

char buffer1[442];
char buffer2[442];
char buffer3[442];
char buffer4[442];

If you find yourself programming like this, alarms should go off and you should reconsider your
algorithm and data structures. Do you really need exactly four buffers? Could there be a case when you
may need more or less? Why is the size set to 442? Perhaps it will make more sense to have an array of
pointers to strings? If you decide that you really do need those four buffers and they really need to be 442
bytes long, then you can improve the clarity of your code by defining 442 as a symbolic constant (with a

1 Walter Oney, Systems Programming for Windows 95, ©1996 Microsoft Press, p. 270-271

C Programming Style

©1998 Paul Krzyzanowski 3

comment explaining why) and picking more descriptive names for the four buffers. Similarly, if you find
yourself declaring:

int a, b, c, d, ff, gg, ii;
char a_buf[], b_buf[];

then it’s time to reconsider the clarity of you variable names and possibly comment some of the data
definitions.

A large number of programmers favor mixed capitalization in variable names. For example, names
like keyboardInputBuffer . I personally favor something more concise, such as kbdbuf for the
clarity reasons cited above. If I’m forced to be verbose, I find underscores less offensive than embedded
capitals. Consider the readability of English prose:

fourscore_and_seven_years_ago_our_fathers_brought_forth_on_this_continent_a_new_
nation_conceived_in_liberty_and_dedicated_to_the_proposition_that_all_men_are_created
_equal.

versus:
fourscoreAndSevenYearsAgoOurFathersBroughtForthOnThisContinentANewNationConce
ivedInLibertyAndDedicatedToThePropositionThatAllMenAreCreatedEqual

Others disagree. Consistency is nice.

Modularize
Most student assignments that I’ve seen demonstrate a reluctance to decompose code. This turns

even simpler assignments into difficult chores. Functional decomposition is the essence of algorithmic
programming and a key to preserving clarity. Long gone are the days when a subroutine would be written
only because the common code needs to be used in several places. Code should be structured so the
underlying algorithms are clearly visible. Try to keep each function short and let it have a single purpose. If
details need to be handled, let a support function take care of them.

Files are a useful vehicle for further modularization. If you have a number of related functions or
your main program decomposes into several logical entities, don’t hesitate to create files. Don’t worry if
the files are small. Perhaps the most useful file is a header file that is included by each of the source files.
The header file will define all the data structures and types used by the program. It will also contain
function prototypes for all of the functions. This file will serve as the most useful reference for the data
structures and interfaces provided in your program.

Avoid cute typography
The visual layout of a program is crucial to its readability. Blocks (code between { and } should be

indented. Two styles are acceptable:

if (whatever) {
statement;
statement;

}
else {

statement;
}

and:

if (whatever) {
statement;
statement;

} else {
statement;

}

Quite a few students, no doubt influenced by Pascal’s begin – end blocks, write:

C Programming Style

©1998 Paul Krzyzanowski 4

if (whatever)
 {

statement;
statement;

 }
else
 {

statement;
 }

This is painful to the eyes of any C programmer and simply not acceptable. Even worse is an attempt to
hide the syntax of the language with constructs like:

#define IF if (
#define THEN){
#define ELSE ;} else {
#define ENDIF ;}

IF whatever THEN
statement;
statement

ELSE
statement

ENDIF

When indenting your code, I don’t care whether your tab stop is three characters, four characters,
eight, or twelve. The important point is I don’t have to care and you should not assume that I will be
looking at your code with the same editor and the same tab settings that you used in writing it. This is a
problem with some editors (e.g. emacs) that insist on using a mix of spaces and tabs (for example, four
spaces for the first indentation level and a tab character for the second indentation level). If your editor does
this, figure out how to fix it, don’t use this feature, or switch editors. If you use the tab character to indent
your code, don’t switch to using a space character to do so. The resultant code will not look right unless the
reader has the same tab settings and font as the writer.

Some output filtering programs “pretty-print” your source to look like an Algol-68 report, rendering
all the reserved keywords in boldface and comments in italics. Rob Pike points out that this accentuates
irrelevant detail and is as sensible as putting all prepositions in English text in bold type.

Clean your code
If you decide to remove an if statement, make sure that you remove the extra indentation from the

following statement. There is also no need to have code that is commented-out. It only serves to confuse
the reader. While programming, and after programming, look at the aesthetics of your program source.

Be robust in accepting input; produce useful output
I cringe when I see an assignment that declares:

char line[80];

The line is obviously written by someone who accepts input in the form of IBM punched cards
whose physical limitation is eighty characters per card.

When accepting input in your program, be robust. A core dump due to bad input is not acceptable.
Ever. Check your input for validity at all times. If it’s not valid, recover gracefully. Produce a concise and
descriptive error message pinpointing the problem. Print the error message to the standard error stream
(stderr).

If your program accepts command-line arguments, make sure the input is foolproof and free-format.
Don’t require the user to know a particular order in entering arguments. Learn to use the getopt function. If
the user makes a mistake, print an error message explaining the syntax of the program. Don’t accept to
many options: users will never learn them. Look at Unix’s ls command as a bad example.

C Programming Style

©1998 Paul Krzyzanowski 5

The DOS world introduced us to programs that look like:

C> fact
Bernice’s excellent factorial program
(c)1998 Bernice F. Lamingo

Please enter the number: 8

The answer to 8 factorial is 40320

C>

Pretty, eh? Compare this with:

$ fact 8
40320
$

The verbosity is gone. One line of input was produced instead of seven but no information was lost.
The user presumably knew what the program was before running it, so there is no point in announcing the
program. The user knew the input to the program, so there is no point in regurgitating that, Finally, the user
really doesn’t care about the author. Far more importantly, the second form of output turns the program into
a useful tool that can be used by other programs (shell scripts). The verbosity of the output as well as the
inconvenient input of the former program disallows such use.

Keep your output short. If it makes sense, make the output such that it can be easily processed by
other programs. This will increase the usefulness of your program.

Test your program … often
I’ve seen many attempts by students to sit down and write a multi-hundred line program and then try

to debug it. The debugging efforts often lead to frustration and failure as there are numerous faults in the
program and it is difficult to locate them. Debugging and testing should be done in conjunction with
incremental development. It is useful to write your program so that it compiles at all times during creation.
This often requires the writing of stub functions – placeholder functions that don’t really do the work of the
function but pretend to do so. The point is to get your main algorithm compiled and working as quickly as
possible, before the bells and whistles are added. After it works, you can start embellishing it by adding the
features you need – one at a time and testing each time.

Test the program for robustness on accepting input. If you process a text file, feed it a huge object
file. If the program expects to read in a number, give it text. Test your input buffer management by feeding
your program huge lines of data. Perhaps the most common error is failing to detect an end-of-file at
unexpected points. Finally, don’t use the gets function. It does not check for buffer overflow.

Optimize your code … later
No doubt you’ve studied or read about some nifty algorithms. You probably know of algorithms

that can do your task in nlog2n time instead of n2 time. You may be eager to use them. It probably doesn’t
make sense to do so 99% of the time. The fancier algorithms are generally more complicated and hence
more bug-prone than the simpler ones. You’ll save yourself some grief by using the simpler algorithm for
your first version of the program. Most everyone can program Shell’s sort without errors the first time but
the a heap sort or quick sort will probably require a few iterations to get write. Using a brute-force search
for a string is trivial, but implementing a Boyer-Moore search take a bit of effort. The second argument
against the “better” algorithms is that there is often a constant setup time involved that is ignored in the
order-complexity calculation. Complexity numbers have an implicit “for large values of n” assumption and
your program will often not have the large volume of data for the efficiency of the better algorithm to be
realized.

The bottom line is that you probably don’t know whether your algorithm is good enough or whether
you should try using a better one. There’s one way to find out. Use the simple algorithm first. It will get
your program working in less time. After that, profile your code. Learn to compile your program to include
timing measurements and use a tool such as prof or gprof (or a line profiler if you have one available). The

C Programming Style

©1998 Paul Krzyzanowski 6

profiler will tell you where the program really is spending most of its time. If the routine that you were
concerned about is taking 15% of the total execution time, then even if you make it infinitely faster, your
program will run only 1.18 times faster. Alternatively, the profiler may confirm your suspicions and you
may choose to improve the algorithm. Profile first. Optimize if necessary.

Most compilers are relatively smart. They reuse common subexpressions and keep frequently-
accessed variables in machine registers. Writing dense code or otherwise trying to encourage a compiler to
produce more efficient code is generally futile.

Pointers are not bad
Yet another edict of the Pascal school of programming was that pointers, especially pointers to

functions, are to be avoided. While they can lead to problems if used incorrectly, they are both a useful tool
and a notational device.

In the simplest case, they offer the programmer one less thing to worry about. A programmer
examining code containing a pointer has only that value to be concerned with rather than dealing with a
variable and an index into it. To a program familiar with the language

for (; *s; ++s) {
if (*s == '%') ...

is every bit as clear as

for (i=0; s[i]; ++i) {
if (s[i] == '%') ...

with one less variable to worry about. Pointers to functions are particularly useful in cases when the data
determines which function gets called. Far too often, I see code that looks like:

if (strcmp(cmd, "run") == 0)
run_cmd(args);

else if (strcmp(cmd, "step") == 0)
step_cmd(args);

else if (strcmp(cmd, "exit") == 0)
exit_cmd(args);

The list goes on. As more commands get added, the number of if statements grows. It would be far
cleaner to leave the code alone and put the command to function mapping into a data structure. For
instance, define:

struct ltab {
char *cmd;
void (*func)();

} map = {
{ "run", run_cmd },
{ "step", step_cmd },
{ "exit", exit_cmd },
{ 0, 0 }

};

and later in the code:

struct ltab *tab;

for (tab=map; tab->cmd; ++tab) /* search through the table */
if (strcmp(cmd, tab->cmd) == 0)

break;
if (tab->cmd)

tab->func(args);
else

fprintf("illegal command: %s\n", cmd);

C Programming Style

©1998 Paul Krzyzanowski 7

The code is somewhat shorter in cases when there are more than two possible commands. Far more
importantly, a programmer can add new commands simply by adding an entry to a table and writing the
appropriate processing function. All the related functions are now encouraged to have the same interface.
This makes documentation easier. Finally, since the program and data are dissociated, the programmer may
choose to replace the linear search with a better algorithm as the list gets longer – perhaps reading the list at
start-up into a hash table.

	Introduction
	Strive for clarity
	Don™t over-comment
	Write your program from the top down
	Choose variable names sensibly
	Modularize
	Avoid cute typography
	Clean your code

	Be robust in accepting input; produce useful output
	Test your program – often
	Optimize your code – later
	Pointers are not bad

