
Clusters

Paul Krzyzanowski

pxk@cs.rutgers.edu

Distributed Systems

Except as otherwise noted, the content of this presentation is licensed under the Creative Commons
Attribution 2.5 License.

Designing highly available systems

Incorporate elements of fault-tolerant design

– Replication, TMR

Fully fault tolerant system will offer
non-stop availability

– You can’t achieve this!

Problem: expensive!

Designing highly scalable systems

SMP architecture

Problem:
performance gain as f(# processors) is sublinear

– Contention for resources (bus, memory, devices)

– Also … the solution is expensive!

Clustering

Achieve reliability and scalability by
interconnecting multiple independent systems

Cluster: group of standard, autonomous servers
configured so they appear on the network as a
single machine

approach single system image

Ideally…

• Bunch of off-the shelf machines

• Interconnected on a high speed LAN

• Appear as one system to external users

• Processors are load-balanced
– May migrate

– May run on different systems

– All IPC mechanisms and file access available

• Fault tolerant
– Components may fail

– Machines may be taken down

we don’t get all that (yet)

(at least not in one package)

Clustering types

• Supercomputing (HPC)

• Batch processing

• High availability (HA)

• Load balancing

High Performance Computing
(HPC)

The evolution of supercomputers

• Target complex applications:

– Large amounts of data

– Lots of computation

– Parallelizable application

• Many custom efforts

– Typically Linux + message passing software
+ remote exec + remote monitoring

Clustering for performance

Example: One popular effort

– Beowulf
• Initially built to address problems associated with

large data sets in Earth and Space Science
applications

• From Center of Excellence in Space Data &
Information Sciences (CESDIS), division of
University Space Research Association at the
Goddard Space Flight Center

What makes it possible

• Commodity off-the-shelf computers are cost
effective

• Publicly available software:
– Linux, GNU compilers & tools

– MPI (message passing interface)

– PVM (parallel virtual machine)

• Low cost, high speed networking

• Experience with parallel software

– Difficult: solutions tend to be custom

What can you run?

• Programs that do not require fine-grain
communication

• Nodes are dedicated to the cluster
– Performance of nodes not subject to external factors

• Interconnect network isolated from external network
– Network load is determined only by application

• Global process ID provided
– Global signaling mechanism

Beowulf configuration

Includes:

– BPROC: Beowulf distributed process space
• Start processes on other machines

• Global process ID, global signaling

– Network device drivers
• Channel bonding, scalable I/O

– File system (file sharing is generally not critical)

• NFS root

• unsynchronized

• synchronized periodically via rsync

Programming tools: MPI

• Message Passing Interface

• API for sending/receiving messages
– Optimizations for shared memory & NUMA

– Group communication support

• Other features:
– Scalable file I/O

– Dynamic process management

– Synchronization (barriers)

– Combining results

Programming tools: PVM

• Software that emulates a general-purpose
heterogeneous computing framework on
interconnected computers

• Present a view of virtual processing elements
– Create tasks

– Use global task IDs

– Manage groups of tasks

– Basic message passing

Beowulf programming tools

• PVM and MPI libraries

• Distributed shared memory
– Page based: software-enforced ownership and consistency

policy

• Cluster monitor

• Global ps, top, uptime tools

• Process management
– Batch system

– Write software to control synchronization and load balancing
with MPI and/or PVM

– Preemptive distributed scheduling: not part of Beowulf (two
packages: Condor and Mosix)

Another example

• Rocks Cluster Distribution

– Based on CentOS Linux

– Mass installation is a core part of the system
• Mass re-installation for application-specific configurations

– Front-end central server + compute & storage nodes

– Rolls: collection of packages
• Base roll includes: PBS (portable batch system), PVM (parallel

virtual machine), MPI (message passing interface), job
launchers, …

Another example
• Microsoft HPC Server 2008

– Windows Server 2008 + clustering package

– Systems Management
• Management Console: plug-in to System Center UI with support for

Windows PowerShell

• RIS (Remote Installation Service)

– Networking
• MS-MPI (Message Passing Interface)

• ICS (Internet Connection Sharing) : NAT for cluster nodes
• Network Direct RDMA (Remote DMA)

– Job scheduler

– Storage: iSCSI SAN and SMB support

– Failover support

Batch Processing

Batch processing

• Common application: graphics rendering

– Maintain a queue of frames to be rendered

– Have a dispatcher to remotely exec process

• Virtually no IPC needed

• Coordinator dispatches jobs

Single-queue work distribution
Render Farms:

Pixar:
• 1,024 2.8 GHz Xeon processors running Linux and Renderman

• 2 TB RAM, 60 TB disk space

• Custom Linux software for articulating, animating/lighting (Marionette),
scheduling (Ringmaster), and rendering (RenderMan)

• Cars: each frame took 8 hours to Render. Consumes ~32 GB storage on a
SAN

DreamWorks:
• >3,000 servers and >1,000 Linux desktops

HP xw9300 workstations and HP DL145 G2 servers with 8 GB/server

• Shrek 3: 20 million CPU render hours. Platform LSF used for scheduling +
Maya for modeling + Avid for editing+ Python for pipelining – movie uses
24 TB storage

Single-queue work distribution

Render Farms:

–ILM:
• 3,000 processor (AMD) renderfarm; expands to 5,000 by harnessing

desktop machines

• 20 Linux-based SpinServer NAS storage systems and 3,000 disks from
Network Appliance

• 10 Gbps ethernet

–Sony Pictures’ Imageworks:
• Over 1,200 processors

• Dell and IBM workstations

• almost 70 TB data for Polar Express

Batch Processing

OpenPBS.org:

– Portable Batch System

– Developed by Veridian MRJ for NASA

• Commands

– Submit job scripts
• Submit interactive jobs

• Force a job to run

– List jobs

– Delete jobs

– Hold jobs

Load Balancing
for the web

Functions of a load balancer

Load balancing

Failover

Planned outage management

Redirection

Simplest technique

HTTP REDIRECT error code

Redirection

Simplest technique

HTTP REDIRECT error code

www.mysite.com

Redirection

Simplest technique

HTTP REDIRECT error code

www.mysite.com

REDIRECT
www03.mysite.com

Redirection

Simplest technique

HTTP REDIRECT error code

www03.mysite.com

Redirection

• Trivial to implement

• Successive requests automatically go to the
same web server

– Important for sessions

• Visible to customer

– Some don’t like it

• Bookmarks will usually tag a specific site

Software load balancer

e.g.: IBM Interactive Network Dispatcher Software

Forwards request via load balancing
– Leaves original source address

– Load balancer not in path of outgoing traffic (high
bandwidth)

– Kernel extensions for routing TCP and UDP
requests

• Each client accepts connections on its own address and
dispatcher’s address

• Dispatcher changes MAC address of packets.

Software load balancer

www.mysite.com

Software load balancer

www.mysite.com

src=bobby, dest=www03

Software load balancer

www.mysite.com

src=bobby, dest=www03

response

Load balancing router

Routers have been getting smarter

– Most support packet filtering

– Add load balancing

Cisco LocalDirector, Altheon, F5 Big-IP

Load balancing router

• Assign one or more virtual addresses to physical
address
– Incoming request gets mapped to physical address

• Special assignments can be made per port
– e.g. all FTP traffic goes to one machine

Balancing decisions:

– Pick machine with least # TCP connections

– Factor in weights when selecting machines

– Pick machines round-robin

– Pick fastest connecting machine (SYN/ACK time)

High Availability
(HA)

High availability (HA)

Class Level
Annual
Downtime

Continuous 100% 0

Six nines
(carrier class switches)

99.9999% 30 seconds

Fault Tolerant
(carrier-class servers)

99.999% 5 minutes

Fault Resilient 99.99% 53 minutes

High Availability 99.9% 8.3 hours

Normal
availability

99-99.5% 44-87 hours

Clustering: high availability

Fault tolerant design
Stratus, NEC, Marathon technologies

– Applications run uninterrupted on a redundant subsystem
• NEC and Stratus has applications running in lockstep

synchronization

– Two identical connected systems

– If one server fails, other takes over instantly

Costly and inefficient

– But does what it was designed to do

Clustering: high availability
• Availability addressed by many:

– Sun, IBM, HP, Microsoft, SteelEye Lifekeeper, …

• If one server fails
– Fault is isolated to that node

– Workload spread over surviving nodes

– Allows scheduled maintenance without disruption

– Nodes may need to take over IP addresses

Example: Windows Server 2003 clustering

• Network load balancing
– Address web-server bottlenecks

• Component load balancing
– Scale middle-tier software (COM objects)

• Failover support for applications
– 8-node failover clusters

– Applications restarted on surviving node

– Shared disk configuration using SCSI or fibre channel

– Resource group: {disk drive, IP address, network
name, service} can be moved during failover

Example: Windows Server 2003 clustering

Top tier: cluster abstractions

– Failover manager, resource monitor, cluster
registry

Middle tier: distributed operations

– Global status update, quorum (keeps track
of who’s in charge), membership

Bottom tier: OS and drivers

– Cluster disk driver, cluster network drivers

– IP address takeover

Clusters

Architectural models

HA issues

How do you detect failover?

How long does it take to detect?

How does a dead application move/restart?

Where does it move to?

Heartbeat network

• Machines need to detect faulty systems
– “ping” mechanism

• Need to distinguish system faults from network faults
– Useful to maintain redundant networks

– Send a periodic heartbeat to test a machine’s liveness

– Watch out for split-brain!

• Ideally, use a network with a bounded response time
– Lucent RCC used a serial line interconnect

– Microsoft Cluster Server supports a dedicated “private
network”

• Two network cards connected with a pass-through cable or hub

Failover Configuration Models

Active/Passive (N+M nodes)
– M dedicated failover node(s) for N active nodes

Active/Active
– Failed workload goes to remaining nodes

Design options for failover

Cold failover

– Application restart

Warm failover

– Application checkpoints itself periodically

– Restart last checkpointed image

– May use writeahead log (tricky)

Hot failover

– Application state is lockstep synchronized

– Very difficult, expensive (resources), prone
to software faults

Design options for failover

With either type of failover …

Multi-directional failover

– Failed applications migrate to / restart on
available systems

Cascading failover

– If the backup system fails, application can
be restarted on another surviving system

System support for HA

• Hot-pluggable devices

– Minimize downtime for component swapping

• Redundant devices

– Redundant power supplies

– Parity on memory

– Mirroring on disks (or RAID for HA)

– Switchover of failed components

• Diagnostics

– On-line serviceability

Shared resources (disk)

Shared disk

– Allows multiple systems to share access to
disk drives

– Works well if applications do not generate
much disk I/O

– Disk access must be synchronized
Synchronization via a distributed lock manager
(DLM)

Shared resources (disk)

Shared nothing

– No shared devices

– Each system has its own storage resources

– No need to deal with DLMs

– If a machine A needs resources on B, A
sends a message to B
• If B fails, storage requests have to be switched

over to a live node

Cluster interconnects
Traditional WANs and LANs may be slow as cluster interconnect

– Connecting server nodes, storage nodes, I/O channels, even
memory pages

– Storage Area Network (SAN)
• Fibre channel connectivity to external storage devices

• Any node can be configured to access any storage through a fibre
channel switch

– System Area Network (SAN)
• Switched interconnect to switch cluster resources

• Low-latency I/O without processor intervention

• Scalable switching fabric

• (Compaq, Tandem’s ServerNet)

• Microsoft Windows 2000 supports Winsock Direct for SAN
communication

Achieving High Availability

heartbeat 2

heartbeat 3

Server A Server B

Fibre
channel
switch

Fibre
channel
switch

Fabric A Fabric B

Storage Area
Network

Local Area
Networks

switch Bswitch A heartbeat

Achieving High Availability

heartbeat 2

heartbeat 3

Server A Server B

Ethernet
switch A’

Ethernet
switch B’

ethernet A ethernet B

Storage Area
Network
(iSCSI)

Local Area
Networks

switch BSwitch A heartbeat

HA Storage: RAID

Redundant Array of Independent (Inexpensive)
Disks

RAID 0: Performance

Striping
• Advantages:

– Performance

– All storage capacity can be used

• Disadvantage:

– Not fault tolerant

RAID 1: HA

Mirroring
• Advantages:

– Double read speed

– No rebuild necessary if a disk fails: just copy

• Disadvantage:

– Only half the
space

RAID 3: HA

Separate parity disk
• Advantages:

– Very fast reads

– High efficiency: low ratio of parity/data

• Disadvantages:

– Slow random
I/O performance

– Only one I/O
at a time

RAID 5

Interleaved parity
• Advantages:

– Very fast reads

– High efficiency: low ratio of parity/data

• Disadvantage:

– Slower writes

– Complex
controller

RAID 1+0

Combine mirroring and striping
– Striping across a set of disks

– Mirroring of the entire set onto another set

The end

