Distributed Systems

Smart Cards, Biometrics, & САРТСНА

Paul Krzyzanowski pxk@cs.rutgers.edu

Except as otherwise noted, the content of this presentation is licensed under the Creative Commons Attribution 2,5 License.

Carrying certificates around

How do you use your [digital] identity?

- Install your certificate in browser
- On-computer keychain file

Need there be more?

Smart cards

- Smart card
 - Portable device
 - credit card, , key fob, button with IC on it
- Communication
 - Contact-based
 - Contactless
 - Near Field Communication (NFC)
 - Communication within a few inches of reader
 - May draw power from reader's EMF signal
 106-424 kbps
 - Hybrid: contact and contactless

Smart cards

Capabilities

- Memory cards
 - Magnetic stripe: stores 125 bytes
 - Smart cards typically store 32-64 KB
 - Optional security for data access
- Microcontroller cards
 - OS + programs + cryptographic hardware + memory

Smart card advantages

Security

- on-board encryption, hashing, signing
- data can be securely transferred
- Store biometric data & verify against user
- key store
 - store public keys (your certificates)

 - *do not* divulge private keys
 perform digital signatures on card
- Convenience
 - more data can be carried on the card
- Personalization
 - e.g. GSM phone card

Smart card applications

- Stored-value cards (electronic purses)
 - Developed for small-value transactions
 - Mid 1990s in Europe and Asia
- GSM phone SIM card
- Credit/Debit
 - Stored account numbers, one-time numbers
 - EMV System (Europay, MasterCard, VISA)
- Passports
- Encoded biometric information, account numbers
- Toll collection & telephone cards Account number (EZ-Pass) or stored value (mass transit)
- Cryptographic smart cards
- Authentication: pin-protected signing with private key

Example: Passport

- Contactless communication
- Stores:
 - Descriptive data
 - Digitized facial image
 - Fingerprints, iris scan, etc. optional
 - Certificate of document signer & personal public key
- Basic Access Control (BAC)

 - Negotiate session key using: passport #, date of birth, expiration date
 - This data is read optically so you need physical access
 Generates 3DESS "document basic access keys"
 - Fixed for life
 - German proposal to use Diffie-Hellman key negotiation

Example: Octopus

- Stored value card contactless
 - Provision for automatic replenishment
 - Asynchronous transaction recording to banks
 - Two-way authentication based on public keys • All communications is encrypted
- Widely used in Hong Kong & Shenzen
 - Buses, stores, supermarkets, fast food, parking
 - Logs \$10.8 million per day on more than 50,000 readers
- Available in:
 - Cards, fobs, watches, toys

Biometrics

- Statistical pattern recognition - Thresholds
- Each biometric system has a characteristic ROC plot - (receiver operator curve, a legacy from radio electronics)

Biometrics: forms

- Iris
 - Analyze pattern of spokes: excellent uniqueness, signal can be normalized for fast matching
- Retina scan
 - Excellent uniqueness but not popular for non-criminals
- Fingerprint
- Reasonable uniqueness
- Hand geometry Low guarantee of uniqueness: generally need 1:1 match
- Signature, Voice
- Behavioral vs. physical system
 - Can change with demeanor, tend to have low recognition rates
- Facial geometry

Biometrics: desirable characteristics

Robustness

- Repeatable, not subject to large changes over time Fingerprints & iris patterns are more robust than voice

Distinctiveness

- Differences in the pattern among population

Fingerprints: typically 40-60 distinct features Irises: typically >250 distinct features Hand geometry: ~1 in 100 people may have a hand with measurements close to yours.

Biometrics: desirable characteristics

Biometric	Robustness	Distinctiveness
Fingerprint	Moderate	High
Hand Geometry	Moderate	Low
Voice	Moderate	Low
Iris	High	High
Signature	Low	Moderate

Irises vs. Fingerprints

- Number of features measured:
 - High-end fingerprint systems: ~40-60 features
 - Iris systems: ~240 features

• Ease of data capture

- More difficult to damage an iris
- Feature capture more difficult for fingerprints: • Smudges, gloves, dryness, ...

Irises vs. Fingerprints

- False accept rates
 - Fingerprints: ~ 1:100,000 (varies by vendor)
 - Irises: ~ 1:1.2 million

Ease of searching

- Fingerprints cannot be normalized
 1:many searches are difficult
- Irises can be normalized to generate a unique IrisCode
 - 1:many searches <u>much</u>faster

Biometrics: desirable characteristics

- Cooperative systems (multi-factor)
 - User provides identity, such as name and/or PIN
- Non-cooperative
 - Users cannot be relied on to identify themselves
 - Need to search large portion of database
- Overt vs. covert identification
- · Habituated vs. non-habituated
 - Do users regularly use (train) the system

Identification vs. Verification

- Identification:
 1:many search
 - Is this X?

Who is this?

- Verification: Is this
 Present a name, PIN, token
 - 1:1 (or 1:small #) search

Biometric: authentication process

1. Sensing

- User's characteristic must be presented to a sensor
- Output is a function of:
 - Biometric measure

 - The way it is presented
 Technical characteristics of sensor

2. Signal Processing

- Feature extraction
- Extract the desired biometric pattern
 - remove noise and signal losses
 - discard qualities that are not distinctive/repeatable
 Determine if feature is of "good quality"

Biometric: authentication process

3. Pattern matching

- Sample compared to original signal in database
- Closely matched patterns have "small distances" between them
- Distances will hardly ever be 0 (perfect match)

4. Decisions

- Decide if the match is close enough
- Trade-off:
 - \downarrow false non-matches leads to \uparrow false matches

Biometric: authentication process

O. Enrollment

- The user's entry in a database of biometric signals must be populated.
- Initial sensing + feature extraction.
- May be repeated to ensure good feature extraction

Detecting Humanness

Gestalt Psychology (1922-1923)

- Max Wertheimer, Kurt Koffka
- · Laws of organization
 - Proximity
 - We tend to group things together that are close together in space
 - Similarity
 - We tend to group things together that are similar
 - Good Continuation
 - We tend to perceive things in good form
 - Closure
 - We tend to make our experience as complete as possible - Figure and Ground
 - We tend to organize our perceptions by distinguishing between a figure and a background

Source: http://w

Gestalt Psychology

Gestalt Psychology

Authenticating humanness

- Battle the Bots
 - Create a test that is easy for humans but extremely difficult for computers
- · CAPTCHA
 - Completely Automated Public Turing test to tell Computers and Humans Apart
 - Image Degradation
 - Exploit our limits in OCR technology
 - Leverages human Gestalt psychology: reconstruction
 2000: Yahoo! and Manuel Blum & team at CMU
 - EZ-Gimpy: one of 850 words
 Henry Baird @ CMU & Monica Chew at UCB
 - BaffleText: generates a few words + random non-English words

Source: http://www.sciam.com/print_version.cfm?articleID=00053EA7-B6E8-1F80-B57583414B7F0103 http://tinyurl.com/dg2zf

