
Page 1Page 1

Authentication Protocols

Paul Krzyzanowski

pxk@cs.rutgers.edu

Distributed Systems

Except as otherwise noted, the content of this presentation is licensed under the Creative Commons
Attribution 2.5 License.

Page 2

Authentication

Establish and verify identity
– allow access to resources

Page 3

Authentication

Three factors:
– something you have key, card

• can be stolen

– something you know passwords
• can be guessed, shared, stolen

– something you are biometrics
• costly, can be copied (sometimes)

Page 4

Authentication

factors may be combined

– ATM machine: 2-factor authentication

• ATM card something you have

• PIN something you know

Page 5

Password Authentication Protocol (PAP)

• Reusable passwords

• Server keeps a database of username:password
mappings

• Prompt client/user for a login name & password

• To authenticate, use the login name as a key to
look up the corresponding password in a
database (file) to authenticate

if (supplied_password == retrieved_password)
user is authenticated

Page 6

Authentication: PAP

Password Authentication Protocol

login, password

OKclient server

• Unencrypted passwords

• Insecure on an open network

Page 7

PAP: Reusable passwords

One problem: what if the password file isn’t
sufficiently protected and an intruder gets hold
of it, he gets all the passwords!

Enhancement:

Store a hash of the password in a file
– given a file, you don’t get the passwords

– have to resort to a dictionary or brute-force
attack

Page 8

PAP: Reusable passwords

Passwords can be stolen by observing a
user’s session over the network:

– snoop on telnet, ftp, rlogin, rsh sessions

– Trojan horse

– social engineering

– brute-force or dictionary attacks

Page 9

One-time password

Different password used each time

– generate a list of passwords

or:

– use an authentication card

Page 10

Skey authentication

• One-time password scheme

• Produces a limited number of
authentication sessions

• relies on one-way functions

Page 11

Skey authentication

Authenticate Alice for 100 logins

• pick random number, R

• using a one-way function, f(x):
x1 = f(R)
x2 = f(x1) = f(f(R))
x3 = f(x2) = f(f(f(R)))

… …
x100 = f(x99) = f(…f(f(f(R)))…)

• then compute:
x101 = f(x100) = f(…f(f(f(R)))…)

give this list
to Alice

Page 12

Skey authentication

Authenticate Alice for 100 logins

store x101 in a password file or database
record associated with Alice

alice: x101

Page 13

Skey authentication

Alice presents the last number on her list:

Alice to host: { “alice”, x100 }

Host computes f(x100) and compares it with
the value in the database

if (x100 provided by alice) = passwd(“alice”)
replace x101 in db with x100 provided by alice
return success

else
fail

next time: Alice presents x99

if someone sees x100 there is no way to generate x99.

Page 14

Two-factor authentication with an
authenticator card

Challenge/response authentication
– user provided with a challenge number from host

– enter challenge number to challenge/response unit

– enter PIN

– get response: f(PIN, challenge)

– transcribe response back to host

• host maintains PIN
– computes the same function

– compares data

• rely on one-way function

Page 15

Challenge-Response authentication

“alice”

Alice network host

“alice” look up alice’s
key, K

generate random
challenge number CC

R ’ = f(K,C)
R ’

R = f(K, C)

R = R ’ ?“welcome”

an eavesdropper does not see K

Page 16

SecurID card

Username:

paul

Password:

1234032848

PIN passcode from card+

Something you know
Something you have

1. Enter PIN
2. Press ◊
3. Card computes password
4. Read off password Password:

354982

Passcode changes every 60 seconds

Page 17

SecurID card

• from RSA, SASL mechanism: RFC 2808

• Compute: AES-hash on:
– 128-bit token-specific seed

– 64-bit ISO representation of time of day
(Y:M:D:H:M:S)

– 32-bit serial number of token

– 32-bits of padding

• Server computes three hashes with different
clock values to account for drift.

Page 21

SecurID

Vulnerable to man-in-the-middle attacks
– attacker acts as application server

– user does not have a chance to authenticate server

Page 22

SKID2/SKID3 authentication

• uses symmetric cryptography
– shared secret key

• generate a random token
– nonce

• give it to the other party, which
encrypts it
– returns encrypted result

• verify that the other party knows the
secret key

Page 23

SKID2/SKID3 authentication

Alice chooses a random
number (nonce) RA

and sends it to Bob

RA Bob

Page 24

SKID2/SKID3 authentication

RA Bob

RB , HK(RA, RB,”bob”)Alice

Bob chooses a random
number (nonce): RB.

He computes HK(RA, RB,”bob”)
and sends it to Alice with RB

Bob shows that he can
encrypt Alice’s nonce

Page 25

SKID2/SKID3 authentication

RA Bob

RB , HK(RA, RB,”bob”)Alice

Alice receives RB and has RA.
Computes: HK(RA, RB,”bob”)

compares result to verify that Bob was able to
encrypt data with key K.

Authentication is complete as far as Alice is
concerned (Bob knows the key).

Page 26

SKID2/SKID3 authentication

RA Bob

RB , HK(RA, RB,”bob”)Alice

Now Alice has to convince Bob (mutual authentication)

HK(RB, “alice”) Bob

Alice demonstrates that she can encrypt Bob’s nonce

Page 27

SKID2/SKID3 authentication

RA Bob

RB , HK(RA, RB,”bob”)Alice

Bob computes HK(RB, “alice”) and compares Alice’s message.
If they match, he trusts Alice’s identity

Key point: Each party permutes data generated by the
other. Challenge the other party with data that will be
different each time.

HK(RB, “alice”) Bob

Page 28

Authentication: CHAP

Challenge-Handshake Authentication Protocol

challenge

hash(challenge, secret)

OK

client server

shared secret shared secret

The challenge-response scheme in a slightly different form.

This is functionally the same as SKID2 (single party authentication)

The challenge is a nonce. Instead of encrypting the nonce with a shared
secret key, we create a hash of the nonce and the secret.

Page 29

Authentication: MS-CHAP

Microsoft’s Challenge-Handshake Authentication Protocol

challenge: 16-byte random #

hash(user name, password, password_challenge, challenge)

OK

client server
password_challenge: 16-byte random #

The same as CHAP – we’re just hashing more things in the response

Page 30Page 30

Combined authentication
and key exchange

Page 31

Wide-mouth frog

• arbitrated protocol – Trent (3rd party) has all the keys

• symmetric encryption for transmitting a session key

“alice” , EA(TA,”bob”, K)

Alice Trent

session key
destination

time stamp – prevent replay attacks

sender

Page 32

Wide-mouth frog

• looks up key corresponding to sender (“alice”)

• decrypts remainder of message using Alice’s key

• validates timestamp (this is a new message)

• extracts destination (“bob”)

• looks up Bob’s key

“alice” , EA(TA,”bob”, K)

Alice Trent

session key
destination

time stamp – prevent replay attacks

senderTrent:

Page 33

Wide-mouth frog

• creates a new message

• new timestamp

• identify source of the session key

• encrypt the message for Bob

• send to Bob

“alice” , EA(TA,”bob”, K)

Alice Trent

session key
source

time stamp – prevent replay attacks

Trent:

EB(TT,”alice”, K)

Bob

Page 34

Wide-mouth frog

• decrypts message

• validates timestamp

• extracts sender (“alice”)

• extracts session key, K

“alice” , EA(TA,”bob”, K)

Alice Trent

session key
source

time stamp – prevent replay attacks

Bob:

EB(TT,”alice”, K)

Bob

Page 35

Wide-mouth frog

Since Bob and Alice have the session key,
they can communicate securely using the key

Alice

EK(M)

Bob

Page 36

Kerberos

• authentication service developed by MIT
– project Athena 1983-1988

• trusted third party

• symmetric cryptography

• passwords not sent in clear text
– assumes only the network can be compromised

Page 37

Kerberos

Users and services authenticate themselves to
each other

To access a service:
– user presents a ticket issued by the Kerberos

authentication server

– service examines the ticket to verify the identity
of the user

Page 38

Kerberos

• user Alice wants to communicate with a
service Bob

• both Alice and Bob have keys

• Step 1:
– Alice authenticates with Kerberos server

• Gets session key and sealed envelope

• Step 2:
– Alice gives Bob a session key (securely)

– Convinces Bob that she also got the session key
from Kerberos

Page 39

Authenticate, get permission

“I want to talk to Bob”

Alice decrypts this:
• gets ID of “Bob’s server”
• gets session key
• knows message came from AS

eh? (Alice can’t read this!)

if Alice is allowed to talk to Bob,

generate session key, S

{“Bob’s server”, S}A

Alice Authentication Server (AS)

{“Alice”, S}B

TICKET
sealed envelope

Page 40

Send key

Alice encrypts a timestamp with
session key

Bob decrypts envelope:

• envelope was created by
Kerberos on request from Alice

• gets session key

Decrypts time stamp

• validates time window

• Prevent replay attacks

{“Alice”, S}B, TS

Alice Bob

sealed envelope

Page 41

Authenticate recipient

Alice validates timestamp

Encrypt Alice’s timestamp in
return message

Alice Bob

{“Bob’s Server”, T}S

Page 42

Kerberos key usage

• Every time a user wants to access a service
– User’s password (key) must be used each time (in

decoding message from Kerberos)

• Possible solution:
– Cache the password (key)
– Not a good idea

• Another solution:
– Split Kerberos server into Authentication Server +

Ticket Granting Server

Page 43

Ticket Granting Service (TGS)

TGS + AS = KDC (Kerberos Key Distribution Center)

• Before accessing any service, user requests a
ticket to contact the TGS

• Anytime a user wants a service
– Request a ticket from TGS

– Reply is encrypted with session key from AS for
use with TGS

• TGS works like a temporary ID

Page 44

Using Kerberos

$ kinit

Password: enter password

ask AS for permission (session key) to access TGS

Alice gets:

Compute key (A) from password to decrypt session key
S and get TGS ID.

You now have a ticket to access the Ticket Granting
Service

{“TGS”, S}A

{“Alice”, S}TGS

Page 45

Using Kerberos

$ rlogin somehost

rlogin uses TGS Ticket to request a ticket for the
rlogin service on somehost

{“rlogin@somehost”, S’}S

{“Alice”, S’}R

{“Alice”, S}TGS,TS

rlogin TGS

session key
for rlogin

ticket for rlogin server
on somehost

Alice sends session key, S, to TGS

Alice receives session key for rlogin service
& ticket to pass to rlogin service

Page 46

Public key authentication

• Alice wants to authenticate herself to Bob:

• Bob: generates nonce, S
– presents it to Alice

• Alice: encrypts S with her private key
(sign it) and send to Bob

Like SKID, demonstrate we can encrypt or
decrypt a nonce:

Page 47

Public key authentication

Bob:
look up “alice” in a database of public keys
– decrypt the message from Alice using Alice’s public

key

– If the result is S, then it was Alice!

• Bob is convinced.

For mutual authentication, Alice has to present
Bob with a nonce that Bob will encrypt with
his private key and return

Page 48

Public key authentication

• Public key authentication relies on binding
identity to a public key

• One option:
get keys from a trusted source

• Problem: requires always going to the source
– cannot pass keys around

• Another option: sign the public key
– digital certificate

Page 49

X.509 Certificates

ISO introduced a set of authentication
protocols: X.509

Structure for public key certificates:

Trusted Certification Authority issues a signed
certificate

version serial #
algorithm,

params
issuer

validity

time

distinguished

name

public key

(alg, params, key)

signature

of CA

Page 50

X.509 certificates

When you get a certificate

• Verify signature
– hash contents of certificate data

– Decrypt CA’s signature with CA’s public key

Obtain CA’s public key (certificate) from trusted source

• Certification authorities are organized in a hierarchy

• A CA certificate may be signed by a CA above it
– certificate chaining

Certificates prevent someone from using a phony
public key to masquerade as another person

Page 51

Agencia Catalana de Certificacio

ANCERT

AOL

Arge Daten

AS Sertifitseerimiskeskuse

Asociacion Nacional del Notariado Mexicano

A-Trust

Austria Telekom-Control Commission

Autoridad Certificadora Raiz de la Secretaria de Economia

Autoridad de Certificacion Firmaprofesional

Autoridade Certificadora Raiz Brasileira

Belgacom E-Trust

CAMERFIRMA

Example: Root Certificates in IE

As of January 2007
http://support.microsoft.com/kb/931125

Page 52

CC Signet

Certicámara S.A.

Certipost s.a./n.v.

Certisign

CertPlus

Colegio de Registradores

Comodo Group

ComSign

Correo

Cybertrust

Deutsche Telekom

DigiCert

DigiNotar B.V.

Dirección General de la Policía – Ministerio del Interior – España.

DST

Example: Root Certificates in IE

As of January 2007
http://support.microsoft.com/kb/931125

Page 53

Echoworx

Entrust

eSign

EUnet International

First Data Digital Certificates

FNMT

Gatekeeper Root CA

GeoTrust

GlobalSign

GoDaddy

Government of France

Government of Japan Ministry of Internal Affairs and Communications

Government of Tunisia National Digital Certification Agency

Hongkong Post

IPS SERVIDORES

Example: Root Certificates in IE

As of January 2007
http://support.microsoft.com/kb/931125

Page 54

IZENPE

KMD

Korea Information Security Agency

Microsec Ltd.

NetLock

Network Solutions

Post.Trust

PTT Post

Quovadis

RSA

Saunalahden Serveri

SECOM Trust.net

SecureNet

SecureSign

SecureTrust Corporation

Example: Root Certificates in IE

As of January 2007
http://support.microsoft.com/kb/931125

Page 55

Serasa

SIA

Sonera

Spanish Property & Commerce Registry

Swisscom Solutions AG

SwissSign AG

S-TRUST

TC TrustCenter

TDC

Thawte

Trustis Limited

TurkTrust

TW Government Root Certification Authority

U.S. Government Federal PKI

Example: Root Certificates in IE

As of January 2007
http://support.microsoft.com/kb/931125

Page 56

Unizeto Certum

UserTRUST

ValiCert

VeriSign

Visa

Wells Fargo

WISeKey

XRamp

Example: Root Certificates in IE

As of January 2007
http://support.microsoft.com/kb/931125

Page 57

Transport Layer Security (TLS)
aka Secure Socket Layer (SSL)

• Sits on top of TCP/IP

• Goal: provide an encrypted and possibly
authenticated communication channel
– Provides authentication via RSA and X.509

certificates

– Encryption of communication session via a
symmetric cipher

• Enables TCP services to engage in secure,
authenticated transfers
– http, telnet, ntp, ftp, smtp, …

Page 58

Secure Sockets Layer (SSL)

client server

hello(version, protocol)

hello(version, protocol)

certificate (or public key)

hello done

1. Establish protocol, version, cipher suite,
compression mechanism, exchange
certificates (or send public key)

certificate (or none)

Page 59

Secure Sockets Layer (SSL)

client server

2. Authenticate (unidirectional or mutual)
[optional]

encrypt with
server’s
private key

client nonce

E(nonce)
client decrypts nonce with
server’s public key

client authenticates server

server authenticates client
server nonce

E(nonce) server decrypts
with client’s public
key

encrypt with
client’s
private key

Page 60

Secure Sockets Layer (SSL)

client server

E(session key)

3. Establish session key
(for symmetric cryptography)

encrypt with
server’s
public key server decrypts with

server’s public key

pick a session key

set cipher mode [optional]

Page 61

Secure Sockets Layer (SSL)

client server

ES(data)

4. Exchange data (symmetric encryption)

encrypt and decrypt with session key
and symmetric algorithm (e.g. RC4)

Page 62Page 62

The end.

