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Introduction 

With conventional SMP systems, multiple processors execute instructions in a single address 

space. It is possible to run parts of a program in parallel, generally by using threads to specify 

such parallelism and using synchronization primitives to prevent race conditions. As the number 

of processors on an SMP system increases, the shared bus becomes a performance bottleneck. 

The NUMA architecture attempted to alleviate this bottleneck by locating a certain amount of 

memory close to each processor. Processors still share the same address space, only access to 

remote memory is slower. This inflicted the addition burden of locating data within the address 

space for optimal performance. Nevertheless, with a single address space data can be shared 

and pointers have meaning on all processors. 

Unfortunately, large-scale SMP and NUMA systems are expensive to build and prices are kept 

high as these are not commodity systems. One motivation for using distributed systems in the 

first place was that a multicomputer system can be cheaper and more reliable. However, all 

communication and synchronization has to be accomplished with message passing. Each system 

has a separate address space, so pointers have no meaning outside of the local address space 

(as we have seen with remote procedure calls). Programs can no longer use global data and any 

data that is to be shared must be packed into a network message and unpacked upon receipt. 

In many cases, it is still easier to program on a uniprocessor or multiprocessor system with a 

uniform address space than to deal with message passing. Tasks of dynamic data partitioning 

and load distribution are greatly simplified in this case. Distributed shared memory is a 

technique for making multicomputers easier to program by simulating a shared address space on 

them. 

Architecture 

To construct such a system, the underlying hardware and/or software must move data (memory 

contents) among processors in a way that provides the illusion of a globally shared address 

space. To get an insight on designing such systems, we can look at one of the earliest systems. 

Li in 1986 and Li and Hudak in 1989 configured a number of workstations on a LAN and had 

them all share a single paged virtual address space. 

In the simplest form, each page of memory (of the distributed shared address space) exists on 

only one machine at a time. References to a memory are made through a processor’s memory 
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Figure 1. Page fault handling in a DSM system 

management unit as in conventional paging systems. If a page table entry for a page is valid, that 

means the page is currently cached locally and the process is allowed to reference it. 

A reference to a shared memory location that is 

not locally present causes a page fault (as would 

a reference to a non-resident page on a 

conventional system). This page fault results in a 

trap to the operating system, which then consults 

a central server, known as the directory, for the 

location of the needed page. The directory 

returns the name of a machine that is currently 

holding the requested page. That machine is 

then contacted to transfer the contents of the 

page over to the machine that needs that portion 

of the address space, with the directory updating 

its information on the residence of that page..  When the page is brought into a frame in local 

memory, the local page table is updated and the faulting instruction is restarted. The program 

continues running.  Figure 1 illustrates this process. In short, all operations take place 

transparently and the DSM system appears like any other virtual memory system to the 

programmer. 

Clearly, the directory can become a bottleneck, as all non-local requests must be channeled 

through that central server. An alternate architecture is to implement a distributed directory. 

The directory may be distributed amongst all processors with each processor being responsible 

for a portion of the address space. When processing a page fault, bits of the page number can be 

hashed to yield the processor that is responsible for maintaining information about that page. 

Directories avoid the broadcast that is used in bus-based coherent caches (where each 

processor’s cache would snoop on the address lines). Instead, point-to-point communication is 

used to the directory. 

Design considerations 

There are a number of design issues that must be considered when designing a distributed 

shared memory system. One of these issues is the granularity of the data transferred. Since we 

are building this atop the system’s virtual memory system, a restriction is that the data units are 

multiples of the node’s page size. Larger pages are attractive since the cost of migration gets 

amortized over many localized accesses. However, a larger page size also increases the chance 

that multiple objects will reside in one page. This is known as false sharing. It occurs when 

process needs to access one memory region and another process needs to access another, non-

overlapping, memory region but both memory regions are mapped into the same page. When two 

nodes need to access the same page, the page will often have to be constantly transferred 

between the nodes. This leads to thrashing. 

To avoid thrashing, it is attractive to allow copies of shared data to reside at multiple nodes 

simultaneously. Replication reduces the average cost of read operations since simultaneous 

reads can be executed locally at multiple hosts. However, write operations become more 

expensive since each cached copy needs to be invalidated or updated. If the ratio of reads over 

writes is sufficiently large, this might still be a worthwhile tradeoff. A basic design for replication, 

similar to DFS file caching, is to allow only one host to have a read/write copy of a page or allow 



Distributed Shared Memory    

Rutgers University – CS 417: Distributed Systems 

 ©1998-2009 Paul Krzyzanowski  3 

multiple hosts to have read/only copies of a page. This is known as multiple readers/single 

writer replication. On a read operation, if a block is not local, the system will acquire a read-only 

copy of the block. By doing so, any node that has the block cached with write permissions 

enabled will be downgraded to read-only permissions. On a write operation, if the block is not 

local or no write permissions exist, the DSM system will invalidate all copies of the block at other 

nodes and get an exclusive copy of the block. The DSM system must keep track of all nodes that 

have a copy of the data block.  Read/write replication can be extended to full replication, where 

multiple hosts can have read/write access to shared data using a multiple readers/multiple writers 

protocol. Access to shared data must be carefully controlled to maintain consistency, making 

efficient operation a challenging task. 

Consistency models 

The most serious problem with Li’s architecture is that only one system may own a memory page 

at a time. If two processes on two processors are frequently accessing the same page, a highly 

inefficient ping-ponging of that page between the two processors results. However, to avoid this 

may create problems in the way memory appears to behave. 

A consistency model is the definition of when modifications to data may be seen at a given 

processor. It defines how memory will appear to a programmer by placing restrictions on the 

values that can be returned by a read of a memory location.  A consistency model must be well 

understood. It determines how a programmer reasons about the correctness of programs and 

determines what hardware and compiler optimizations may take place. 

Intuition and uniprocessor experience tells us that a read returns the data placed by the last write 

to that memory location. This is known as strict consistency. This does not happen in 

multicomputer systems (or many multiprocessor systems as well). 

A slight relaxation of the rules of strict consistency is sequential consistency. Lamport defined 

sequential consistency as: 

the result of any execution is the same as if the operations of all processors were 

executed in some sequential order, and the operations of each individual 

processor appear in this sequence in the order specified by the program. 

Sequential consistency requires: 

1. all memory operations to execute one at a time. 

2. all operations of a single processor to appear to execute in program order. 

Any interleaving among processors is possible and acceptable.  For example, suppose we have 

two processes with the following code (assume all values are 0 until set): 

process 0 process 1 

a=1 

print(a,b) 

b=1 

print(a,b) 
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Some possible results may be 

sequence 0 sequence 1 sequence 2 

a=1 

print(a,b) 

b=1 

print(a,b) 

a=1 

b=1 

print(a,b) 

print(a,b) 

a=1 

print(a,b) 

print(a,b) 

b=1 

results results results 

1 0 

1 1 

1 1 

1 1 

1 0 

1 0 

consistent? consistent? consistent? 

yes yes no 

As another example, consider Dekker’s algorithm for mutual exclusion running on two processes: 

process 0 process 1 

flag1 = 1 

if (flag2 == 0) 

    critical section 

flag2 = 1 

if (flag1 == 0) 

    critical section 

A sequentially consistent system cannot allow an outcome where both flag1 and flag2 are 

zero so both processes can enter the critical section. 

Sequential consistency with uniprocessor systems 

Most high-level languages present simple sequential semantics for memory operations. The 

programmer assumes that all memory operations will occur one at a time in the sequential order 

given by the program (program order). 

This illusion can be supported quite easily and efficiently on uniprocessor systems. The system 

(compiler as well as the memory and CPU hardware) needs to only maintain data and control 

dependencies. Operations need to be executed in program order only when one modifies a 

memory location used by another or where one instruction controls the execution of another (for 

example, a conditional branch). 

The compiler or the hardware can freely reorder all operations that do not have these 

dependencies. For the compiler, these optimizations include register allocation, loop unraveling, 

and code reordering. For the CPU hardware, these optimizations include pipelining, multiple 

issue, and lockup-free caches. 
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Sequential consistency with multiprocessor/multicomputer 

systems 

Sequential consistency is not trivial to achieve in multiprocessor systems and problems may arise 

if not designed carefully. This section surveys some of these problems. 

Cacheless architectures: write buffers 

A multiprocessor system without local caches will have to block for any read requests since it 

cannot proceed without that data. However, it need not wait for write operations to complete, so a 

write queue can be employed to optimize writes. All read operations will go to memory unless the 

address is in the write queue, in which case the data will be fetched from there. 

Sequential consistency can be violated since a write to different locations may be pending in both 

processors. Each processor, however, reads the other’s data from main memory and not from the 

other’s write buffer (it cannot do so). Consider Dekker’s algorithm (page 4). In this case process 1 

may have set flag2 = 1 but the update is still in the write queue for that processor so process 0 

reads the old value (0) from main memory. Sequential consistency is violated, both processes 

see a value of 0 for the other’s flag and enter the critical section concurrently. 

Cacheless architectures: overlapping reads and writes 

If memory access is non uniform for all processors and all locations (e.g., a NUMA architecture), 

the order in which write operations reach memory may differ program order. Suppose one 

processor added a new value to a linked list. It first writes the data and then updates the pointer 

to the head of the list: 

*new = data 

*head = new 

If the path to head is quicker than that to new causing head is set first, sequential consistency is 

violated. Another processor can read the new value of head and dereference it before the new 

value of data is written, thus obtaining corrupt data. Another danger is that the compiler or CPU 

may reorder these writes since it is safe to do so in a uniprocessor system but dangerous in 

multiprocessor or distributed systems. 

The same problem can exist with overlapping read operations. Processors that issue early non-

blocking read operations (in the hope of getting the data to the CPU before the instruction is 

executed) can suffer from the secondary read being executed first and reflecting a state of 

memory prior to that of the first read. 

Cached architectures 

The problem of caches was visited earlier with symmetric multiprocessors (SMP) and is present 

with a distributed shared memory system. Processors need to know when the contents of their 

cache are no longer valid so they can update or invalidate the cached entries. With SMP 

systems, this required that caches be write-

through and that a snooping mechanism 

exist. With a distributed system, a processor 

that issues a write operation needs to be able 

to detect that the write has completed. It also 

needs a mechanism to acknowledge the 

 

 

 

 

 

Figure 2. Out of order write updates 
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receipt of invalidation or update messages. A write can be considered complete only after all such 

acknowledgements are received. The reason for these requirements is that sequential 

consistency requires that memory operations appear to be atomic (instantaneous at all points) but 

propagating changes to multiple cache copies is a non-atomic operation. 

Even if processors execute memory operations in program order and one at a time, it is still 

possible to violate sequential consistency if updates of writes by two processors reach the other 

processors in a different order (Figure 2). To avoid this violation, a condition has to be imposed 

that all writes to the same location be serialized. All processors will then see writes to the same 

location in the same order. This can be easily achieved if all writes originate from a single point 

(e.g., a coordinator) and message ordering is preserved on the network. Alternatively, we can 

delay an update or invalidate from being sent until any updates that have been issued on behalf 

of a previous write to the same location have been acknowledged. 

Serialized writes are not enough, however. Sequential consistency may still be violated if a 

processor returns a value of a write to a location before another processor has seen the update. 

For instance, consider the following sequence of events: 

suppose location A contains w. 

P1 writes x to location A. 

P2 reads x from location A. 

P2 modifies location B based on A: B  y where y = f(x). 

P3 receives update of B 

P3 receives update of B 

P3 reads B and A, getting the new value of B (y) and the old value of A(w). 

Sequential consistency has been violated! 

P3 receives update of A. 

To prevent situations like this, a read cannot be allowed to return a newly written value until all 

cached copies have acknowledged the receipt of the invalidation (or update) messages 

generated by the write to that location. 

Compilers 

Compilers can be a problem when dealing with shared memory. Compiler-generated reordering 

of shared memory operations can violate sequential consistency. Unless a complex and detailed 

analysis is performed, program order should be preserved among shared memory operations. In 

addition, register allocation can eliminate shared memory operations, hence violating sequential 

consistency. 

On the positive side, a number of compiler algorithms have been developed to detect when 

memory operations can be reordered without violating sequential consistency. 

Summary of sequential consistency 

A processor must ensure that its previous memory operation is complete before proceeding with 

the next one. This is called the program order requirement. Determining completion of a write 

typically requires an acknowledgement from the memory system. If caches are present, the write 

must generate update or invalidate messages that must be acknowledged by all processors that 

hold cached copies. 
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In cache-based systems, writes to the same location must be visible in the same order by all 

processors. The value of a write will not be returned by a read until all updates (or invalidates) are 

acknowledged. This is the write atomicity requirement. 

Hardware techniques for dealing with sequential consistency 

A goal in system design is to maximize performance while adhering to the memory consistency 

model that is used. 

Write operations require that remote caches be kept valid. To overcome this overhead, the 

processor can look ahead in the instruction stream for write operations and issue prefetch-

exclusive requests for those addresses. These requests invalidate data from other caches. Write 

operations can then be issued in-order when encountered without the having other processors 

maintain stale versions. Such a technique only works with cache-based systems that use an 

invalidation rather than an update protocol. 

Remote read operations can be quite slow, so the processor can look ahead in the instruction 

stream for them and speculatively issue the read requests before they are needed. If the read line 

gets invalidated or updated, the processor will have to roll back and reissue the necessary read 

and all subsequent operations that depend on it. This is suitable for dynamically scheduled 

processors with rollback mechanisms present (which currently are used for dealing with branch 

mispredictions). 

Both of these techniques will be supported by several microprocessors, including the Intel P6 and 

the MIPS R10000. 

Further relaxation 

To achieve better memory efficiency (and perhaps complicate life the programmer), the rules of 

sequential consistency may be relaxed beyond the guarantees provided by sequential 

consistency. The program order requirement can be relaxed to affect the values of memory 

contents between successive read/write operations. Relaxing the program order requirement 

requires us to examine several combinations (read to a following read/write, write to a following 

read/write), each or all of which can be relaxed. The write atomicity requirement can be relaxed to 

allow a processor to use a value before others get it. For every relaxation of the rules we must 

consider that in the end we want a system whose outcome will be deterministic. 

One relaxation is relaxing the program order constraints in the case of a write followed by a read 

to a different location. This seems innocuous but can affect program correctness when the 

address read depends on the value written. For example, a sequence: 

write head 

read list[head] 

can produce unexpected results. Two architectures that relax write-read ordering are the IBM 370 

and the Sun SPARC V8. To enforce sequential consistency in cases when it is needed, the read 

can be changed to a read-write combination, writing back the value just read. Since consistency 

is guaranteed for read-write ordering, the entire sequence will be sequentially consistent. This is 

the solution that must be taken on a machine such as the Sun SPARC V8. Alternatively, the 

processor can provide a mechanism allowing the programmer to force a set of operations to be 

consistent. The IBM 370, for example, provides serialization instructions that may be placed 
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between two operations (some of these are memory operation instructions such as compare-and-

swap and others are branch instructions). Placing a serialization instruction after each write on 

each processor will provide sequential consistency. 

Relaxing the write-write ordering allows the system to eliminate ordering constraints between 

writes to different locations. For example the SPARC V8’s Partial Store Ordering (PSO). As with 

write-read ordering, there are times when sequential consistency is needed. The SPARC’s PSO 

provides an STBAR instruction for explicitly imposing order between two writes. 

Weak consistency 

A further relaxation of memory consistency is to relax program order between all operations to 

different locations. In this case any read or write may be reordered with respect to a read or write 

to a different location. These consistency models are known as weak consistency (or weak 

ordering). Consider the case where a process is in a critical section and reading/writing data that 

nobody else will access until it leaves the critical section. In this there is no need to propagate 

writes sequentially or at all until the process leaves the critical section. 

To accomplish this, we introduce the concept of a synchronization variable. Operations on this 

variable are used to synchronize memory. When the synchronization completes, all writes have 

been propagated. Think of the synchronization variable as a blocking instruction that does not 

return until memory is synchronized. 

Weak consistency enforces consistency on a group of operations rather than individual reads and 

writes. Its consistency guarantees are: 

1. Access to synchronization variables are sequentially consistent (all processes see 

synchronization variables in the same order). 

2. No access to a synchronization variable is allowed until all previous writes have 

completed. The synchronization variable serves to flush the pipeline of writes. 

3. No read or write is permitted until all previous accesses to synchronization variables 

have been performed. When memory is next accessed, all previous synchronizations 

have been performed, ensuring that all memory is updated and changes have been 

propagated. 

Release consistency 

One problem with weak consistency is that, when accessing a synchronization variable, the 

hardware does not know if this is because the process has finished memory accesses or is about 

to start them. During a synchronization the system must always make sure that: 

1. all locally initiated writes have completed (propagated). 

2. Gather information on updates from other machines. 

Release consistency alleviates this problem by separating synchronization into two operations: 

 Acquire access requests entry to the critical section. It acquires changes from the 

outside. 
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 Release access states that memory operations are complete. Local changes can be 

propagated. 

Although shared memory transparency was lost on a per instruction basis, a more efficient 

system can be constructed through explicit acquire and release operations. Critical sections are 

not always necessary. Instead, barriers may be used. A barrier is a synchronization mechanism 

that prevents a process from starting phase n+1 until all processes are finished with phase n. 

Arrival at a barrier results in a release operation. Departure from a barrier (when all other 

processes have arrived at the barrier and are finished with their respective release operations) 

results in an aquire. 

The memory system has no obligation to provide proper values to processes that do not perform 

the appropriate acquire operation. For example, in Figure 3, processes P1 and P2 properly 

coordinate acquire and release. Processes P3 and P4 do not and hence the value of x is 

undefined for them. Acquire and release operations need not apply to all of memory (the entire 

address space need not be shared). They can apply to a group of variables. In this case, only that 

region of memory is considered shared and will be synchronized with acquire and release. This 

form of release consistency is generally called eager release consistency (ERC). 

 

One inefficiency is that with a release operation, changes (invalidations) are propagated to every 

process, even those not interested in the changes. Instead of propagating updates or 

invalidations to all processes at release, we can wait until some other node performs an acquire 

and then propagate the changes to the acquiring process. For a release operation, a node will 

simply note its changes locally (mark which pages were modified and ensure that they do not get 

modified after the release). On an acquire, the acquiring node will contact the node that 

performed the release to get its changes. This variant is known as Lazy Release Consistency 

(LRC). 

Another variant of release consistency requires one node to be the ―home‖ of a specific page. At 

release, differences between the original page and the modified page are computed and 

transferred to the home node for that page. The node that just did the release can now discard 

these differences and feel free to modify the page. The home node will apply the differences as 

soon as they arrive. When other nodes perform an acquire, they contact the home node for the 

latest copy of the page. This is known as Home-based Lazy Release Consistency. 

Entry consistency 

Release consistency still has the goal of synchronizing everything (all of memory or all protected 

variables or a shared region). Entry consistency is used just like release consistency. The 

P1 acquire(A) x 1 x 2  release(A)   

P2   acquire(A) — blocks —  read(x)=2 release(A) 

P3      read(x)=1  

P4      read(x)=0  

Figure 3 Release consistency 
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programmer (or, better yet, the compiler) still has to issue acquire and release operations, but 

now each ordinary variable has a synchronization variable associated with it (even individual 

elements of arrays may have synchronization variables if they are processed individually). 

The goal is to reduce the overhead associated with acquiring and releasing a synchronization 

variable since only a few shared variables may need to be synchronized at any time. Multiple 

critical sections with disjoint shared variables can execute in parallel.  

A few examples 

Compaq’s (formerly Digital’s) Alpha processor provides two instructions to deal with consistency. 

The memory barrier (MB) instruction maintains program order from any memory operations 

before the MB to memory operations after the MB. A restricted form of the memory barrier is the 

write memory barrier (WMB), which provides this guarantee only among memory write 

operations. 

Sun’s SPARC V9 processor supports relaxed memory ordering (RMO) and allows for sequential 

consistency with the MEMBAR instruction. This instruction can be customized to order a 

combination of previous read/write operations with respect to future read/write operations (thus 

serving as a barrier for classes of memory operations). It supports an argument in which a four-bit 

encoding can specify any combination of the following orderings: 

  read to read 

  read to write 

  write to read 

  write to write 

The Power PC provides a SYNC instruction that is similar to the Alpha’s MB with one difference: 

if a SYNC is present between two reads to the same location, it is possible for the second read to 

return the value of an older version than the first read (violating program order). To counteract 

this, a read-write (of the same location) sequence can be used to enforce sequential consistency. 


