
Page 1Page 1

Mutual Exclusion &
Election Algoritms

Paul Krzyzanowski

pxk@cs.rutgers.edu

Distributed Systems

Except as otherwise noted, the content of this presentation is licensed under the Creative Commons 
Attribution 2.5 License.



Page 2Page 2

Mutual Exclusion & Election 
Algorithms



Page 3

Process Synchronization

Techniques to coordinate execution among 
processes

– One process may have to wait for another

– Shared resource (e.g. critical section) may require 
exclusive access



Page 4

Centralized Systems

Mutual exclusion via:
– Test & set in hardware

– Semaphores

– Messages

– Condition variables



Page 5

Distributed Mutual Exclusion

• Assume there is agreement on how a resource 
is identified
– Pass identifier with requests

• Create an algorithm to allow a process to 
obtain exclusive access to a resource.



Page 6

Centralized algorithm

• Mimic single processor system

• One process elected as coordinator

P

C
request(R)

grant(R)

1. Request resource

2. Wait for response

3. Receive grant

4. access resource

5. Release resource release(R)



Page 7

Centralized algorithm

If another process claimed resource:
– Coordinator does not reply until release

– Maintain queue
• Service requests in FIFO order

P0

C
request(R)

grant(R)

release(R) P1

P2

request(R)

Queue

P1

request(R)

P2

grant(R)



Page 8

Centralized algorithm

Benefits

• Fair
– All requests processed in order

• Easy to implement, understand, verify

Problems

• Process cannot distinguish being blocked from 
a dead coordinator

• Centralized server can be a bottleneck



Page 9

Token Ring algorithm

Assume known group of processes
– Some ordering can be imposed on group

– Construct logical ring in software

– Process communicates with neighbor

P0

P1

P2

P3

P4

P5



Page 10

Token Ring algorithm

• Initialization
– Process 0 gets token for resource R

• Token circulates around ring
– From Pi to P(i+1)mod N

• When process acquires token
– Checks to see if it needs to enter critical section

– If no, send ring to neighbor

– If yes, access resource
• Hold token until done

P0

P1

P2

P3

P4

P5

token(R)



Page 11

Token Ring algorithm

• Only one process at a time has token
– Mutual exclusion guaranteed

• Order well-defined
– Starvation cannot occur

• If token is lost (e.g. process died)
– It will have to be regenerated

• Does not guarantee FIFO order
– sometimes this is undesirable



Page 12

Ricart & Agrawala algorithm

• Distributed algorithm using reliable multicast 
and logical clocks

• Process wants to enter critical section:
– Compose message containing:

• Identifier (machine ID, process ID)

• Name of resource

• Timestamp (totally-ordered Lamport)

– Send request to all processes in group

– Wait until everyone gives permission

– Enter critical section / use resource



Page 13

Ricart & Agrawala algorithm

• When process receives request:
– If receiver not interested:

• Send OK to sender

– If receiver is in critical section
• Do not reply; add request to queue

– If receiver just sent a request as well:
• Compare timestamps: received & sent messages

• Earliest wins

• If receiver is loser, send OK

• If receiver is winner, do not reply, queue

• When done with critical section
– Send OK to all queued requests



Page 14

Ricart & Agrawala algorithm

• N points of failure

• A lot of messaging traffic

• Demonstrates that a fully distributed 
algorithm is possible



Page 15

Lamport’s Mutual Exclusion

Each process maintains request queue
– Contains mutual exclusion requests

Requesting critical section:
– Process Pi sends request(i, Ti) to all nodes

– Places request on its own queue

– When a process Pj receives
a request, it returns a timestamped ack

Lamport time



Page 16

Lamport’s Mutual Exclusion

Entering critical section (accessing resource):
– Pi received a message (ack or release) from every 

other process with a timestamp larger than Ti

– Pi’s request has the earliest timestamp in its queue

Difference from Ricart-Agrawala:
– Everyone responds (acks) … always - no hold-back

– Process decides to go based on whether its 
request is the earliest in its queue



Page 17

Lamport’s Mutual Exclusion

Releasing critical section:
– Remove request from its own queue

– Send a timestamped release message

– When a process receives a release message
• Removes request for that process from its queue

• This may cause its own entry have the earliest timestamp in 
the queue, enabling it to access the critical section



Page 18Page 18

Election algorithms



Page 19

Elections

• Need one process to act as coordinator

• Processes have no distinguishing 
characteristics

• Each process can obtain a unique ID



Page 20

Bully algorithm

• Select process with largest ID as coordinator
• When process P detects dead coordinator:

– Send election message to all processes with higher 
IDs.

• If nobody responds, P wins and takes over.
• If any process responds, P’s job is done.

– Optional: Let all nodes with lower IDs know an 
election is taking place.

• If process receives an election message
– Send OK message back
– Hold election (unless it is already holding one)



Page 21

Bully algorithm

• A process announces victory by sending all 
processes a message telling them that it is 
the new coordinator

• If a dead process recovers, it holds an 
election to find the coordinator.



Page 22

Ring algorithm

• Ring arrangement of processes

• If any process detects failure of coordinator
– Construct election message with process ID and 

send to next process

– If successor is down, skip over

– Repeat until a running process is located

• Upon receiving an election message
– Process forwards the message, adding its process 

ID to the body



Page 23

Ring algorithm

Eventually message returns to originator
– Process sees its ID on list

– Circulates (or multicasts) a coordinator message 
announcing coordinator

• E.g. lowest numbered process



Page 24

Problems with elections

Network segmentation
– Split brain

Rely on alternate communication mechanism
– Redundant network, shared disk, serial line, SCSI



Page 25Page 25

The end.


