
 

Rutgers University – CS 417: Distributed Systems 

©2000-2009 Paul Krzyzanowski  1 

 

Figure 4. Simulating group 
communication with multiple unicasts 

 
Figure 5. Simulating group 
communication with a central 
coordinator. 

bus interconnect
 

Figure 2. Multicast 

bus interconnect

discard

 
Figure 3. Simulated multicast via 
broadcast 

Lectures on distributed systems 

Group Communication 

Paul Krzyzanowski 

Introduction 

Remote procedure calls assume the existence of two parties: a 

client and a server. This, as well as the socket-based 

communication we looked at earlier, is an example of point-to-point, 

or unicast, communication. Sometimes, however, we want one-to-

many, or group, communication. 

Groups are dynamic (Figure 1). They may be created and 

destroyed. Processes may join or leave groups and processes may 

belong to multiple groups. An analogy to group communication is 

the concept of a mailing list. A sender sends a message to one 

party (the mailing list) and multiple users (members of the list) 

receive the message. Groups allow processes to deal with collections of processes as one 

abstraction. Ideally, a process should only send a message to 

a group and need not know or care who its members are. 

Implementing group communication 

Group communication can be implemented in several ways. 

Hardware support for multicasting allows the software to 

request the hardware to join a multicast group. Messages 

sent to the multicast address will be received by all network 

cards listening on that group(s) (Figure 2). If the hardware 

does not support multicasting, an alternative is to use 

hardware broadcast and software filters at the receivers. Each 

message is tagged with a multicast address. The software 

processing the incoming messages extracts this address and 

compares it with its list of multicast addresses that it should 

accept. If it is not on the list, the message is simply dropped 

(Figure 3). While this method generates overhead for 

machines that are not members of the group, it requires the sender to only send out a single 

message. 

Figure 1. Group dynamics 
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A final implementation option is to simulate multicasting completely in software. In this case, a 

separate message will be sent to each receiver. This can be implemented in two ways. The 

sending machine can know all the members of the group and send the same message to each 

group member (Figure 4). Alternatively, some machine can be designated as a group coordinator: 

a central point for group membership information (Figure 5). The sender will send one message 

to the group coordinator, which then iterates over each group member and sends the message to 

each member. 

As with unicast communication, group communication also requires a transport-level protocol. 

Even with hardware support, there must be a mechanism for directing data to the interested 

process(es) 

Design issues 

A number of design alternatives for group communication are available. These will affect how the 

groups behave and send messages. 

Closed group vs. 

open group 

With closed groups, only the group members may send a 

message to the group. This is useful when multiple processes 

need to communicate with others in solving a problem, such as 

parallel processing applications. 

The alternative is open groups, where non-members can send a 

message to a group. An example use of this type of group is an 

implementation of a replicated server (such as a redundant file 

system). 

Peer groups vs. 

hierarchical groups 

With peer groups, every member communicates with each other. 

The benefits are that this is a decentralized, symmetric system 

with no point of failure. However, decision making may be complex 

since all decisions must be made collectively (a vote may have to 

be taken). 

The alternative is hierarchical groups, in which one member 

plays the role of a group coordinator. The coordinator makes 

decisions on who carries out requests. Decision making is 

simplified since it is centralized. The downside is that this is a 

centralized, asymmetric system and therefore has a single point of 

failure.  

centralized group 

membership vs. 

distributed 

membership 

If control of group membership is centralized, we will have one 

group server that is responsible for getting all membership 

requests. It maintains a database of group members. This is easy 

to implement but suffers from the problem that centralized systems 

share – a single point of failure. 

The alternative mechanism is to manage group membership in a 

distributed way where all group members receive messages 

announcing new members (or the leaving of members). 
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Several problems can arise in managing group membership. Suppose a group member crashes. 

It effectively leaves the group without sending any form of message informing others that it left 

the group. Other members must somehow discover that it is missing. 

Leaving and joining a group must be synchronous with message delivery. No messages should 

be received by a member after leaving a group. This is easier to achieve if a group 

coordinator/group server is used for message delivery and membership management.  

A final design issue is that if the machines and/or the network die so the group cannot function, 

how are things restarted? 

Send/receive primitives 

Remote procedure calls (RPC) were, for many applications, more convenient and intuitive than 

the send/receive (write/read) model provided by sockets. Remote procedure calls, however, do 

not lend themselves to group communication. RPC is based on a function call model wherein a 

procedure is called and a value returned as a result. If we try to apply this to group 

communication, one message is sent to the group to invoke the procedure. The return value is 

not clear now, since every member of the group may generate one. RPC just does not expect this 

behavior. We have to fall back on send/receive primitives when working with a group. 

Atomic multicast 

One desirable property for certain types of group communication is that of ensuring that all group 

members get a message. More specifically, if a message is sent to a group and one member 

receives it, that member can be sure that all members will get the message. This is an all or 

nothing property: it either arrives correctly at all members or else no member receives the 

message. There will never be a situation where some members receive the message and others 

do not. This property is known as atomicity and this type of multicast is called an atomic 

multicast. An atomic multicast is appealing because it makes application design easier in that 

there is one less thing to worry about – missing or partially delivered messages. 

While this property is desirable, it is not easy to achieve. The only way to be sure that a 

destination received a message is to have it send back an acknowledgement message upon 

message receipt. This is prone to problems since some replies can be lost, the sender may have 

crashed after sending the message and cannot process the replies, or the receiver crashed 

before it could send a reply. What we need to do to achieve an atomic multicast is to ensure that 

we can deliver messages even with process failures.  

There are several ways that we can achieve this. One way is to use the concept of a persistent 

log from database systems. The persistent log is simply a series of messages written onto a disk 

or some non-volatile memory so that it could be recovered even if the process dies. Should a 

process die, it is responsible for reading the log when it comes up again. 

In this system, the sender sends messages to all members of the group and waits for an 

acknowledgement from each member. The sender saves a copy of the message in the log and 

also logs each acknowledgement it has received. This way, even if it dies, it can resume where it 

left off once the process is restarted. If an acknowledgement has not been received from a 

member, the sender will retransmit periodically until the member acknowledges the message. On 

the receiving side, a group member logs the received message into its persistent log upon 
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receiving the message and prior to sending the acknowledgement. Even if the member dies now, 

it will have the message when it restarts. When all members have acknowledged receipt of the 

message, the sender can then send a “deliver” message, instructing each member to deliver the 

message to the higher layers of the software that will process the message. 

This solution is somewhat troublesome to implement in terms of logging and recovering from 

failed processes. The essential point is that the protocol must account for the sender crashing 

after it sent some or all of the messages and for receivers that may be dead at any point during 

the multicast.  

Reliable multicast 

A compromise to atomic multicast is to assume that the sending machine will remain alive to 

ensure that a message was sent out to all members of the group. This is called a reliable 

multicast. It is a best-effort attempt at reliability but makes no guarantees in the case where the 

sender is unable to transmit or receive messages to other group members. One implementation 

can be: 

1. Set a long timer, TL. This will be used to detect an unresponding machine. 

2. Set a shorter timer, TS. This will be used to detect lost messages or lost 
acknowledgements. 

3. Send a message to each group member. 

4. Wait for an acknowledgement message from each group member. 

5. If timer TS goes off, then retransmit the message to members that have not 
responded, reset the timer, and wait. 

6. If timer TL goes off, then label the unresponding machines as “failed” and 
remove them from the group. 

In the best case, if multicast or broadcast facilities are available, the sender needs to only send 

one message. If these facilities are not available, they can be simulated: 

for ( dest in group) 

 send(dest, msg) 

Each recipient sends one message as an acknowledgement. 

We can try to increase performance by decreasing the number of messages sent. The sender 

maintains a count of the number of messages sent. This count is appended to each message 

sent and acts as a message sequence number. Recipients send no acknowledgement message 

unless the sequence number indicates that a message was missed. This is known as a negative 

acknowledgement protocol. The sender is responsible for keeping copies of old messages for 

retransmission. The problem with this protocol is that the sender has no way to detect that a 

machine is no longer responding. 

Unreliable multicast 

If the reliable multicast is deemed too costly, the next step down is the unreliable multicast. This 

is the basic multicast in which a message is sent and the process just hopes that it arrives at all 

destinations. It is useful for services that don’t require reliability (e.g. multicast video and audio). It 

is also useful in cases when the sender does not know the identity of the group members. 
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If multicast or broadcast facilities are available, the sender needs to only send one message. The 

recipients need to send nothing. If these facilities are not available, they can be simulated as 

mentioned above. 

Message ordering 

To make group communication easy to use and understand, two properties are desirable: 

 atomicity: message arrives everywhere 

 first-in-first-out (FIFO) message ordering: consistent message ordering. 

Suppose there is a group of four machines {0, 1, 2, 3}. Machines 0 and 1 send messages 

simultaneously via multiple unicasts: 

 0 1, 0 2, 0 3 

 1 0, 1 2, 1 3 

If the messages appear on the network in the following chronological sequence: 

{0 1}, {1 0}, {1 2}, {0 2}, {0 3}, {1 3} 

then machine 2 receives a message from machine 1 first, followed by a message from machine 

0. Machine 3, however, receives a message from machine 0 first, followed by a message from 

machine 1. If machines 0 and 1 were trying to update the same record in a database, 2 and 3 

could end up with different values. To avoid confusion and potential problems, it is desirable to 

have all messages arrive in the exact orders sent. This is known as global time ordering. It is 

not always easy to implement global time ordering. A compromise it to say that if two messages 

are close together, the system picks one of them as being “first.” All messages arrive at all group 

members in the same order (which may or may not be the exact order sent). This compromise is 

called consistent time ordering or total ordering. 

One algorithm for achieving total ordering is: 

1. Assign a unique totally sequenced message ID
1
 to each message. 

2. Each message is regarded as stable at an element if no message with a lower 
ID is expected to arrive. When messages can arrive out of order, the system 
will accept such messages but not forward them to the application. A message 
is stable at an element when the system has received all earlier messages 
and passed them on to the receiving process. Any message that is stable at 
an element can be immediately passed on to the receiving process. This 
ensures in-order delivery. Any other messages are buffered until the out-of-
order messages are received. 

3. The communications driver passes only stable at an element messages to the 
application, passing the message with he lowest ID first. 

4. Each member saves all messages in a queue for delivery to applications. 

One problem that arises in implementing this protocol is that of generating a message identifier 

since we need a shared sequence of identifiers. A few solutions can be adopted: 

                                                      
1
 By a totally sequenced message ID we mean that all members of the group get unique, chronologically 

increasing sequence numbers. 
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1110 28-bit multicast ID

 
Figure 5. A class D IP address 

- Use a sequencer, a common process to which all multicast messages are sent. The 

sequencer receives a message, attaches a sequence number, and then resends the 

message to the group members. 

- Use a sequence number server. A process will first contact the sequence number 

server to request a sequence number. The process will then attach the sequence 

number to the message and multicast it. 

- Alternatively, one can come up with a distributed protocol for generating unique, 

monotonically increasing message identifiers. 

We can relax ordering rules further and dictate that ordering will be preserved only amongst 

related messages. Unrelated messages may be received in a different order on different systems. 

This partial ordering is known as causal ordering and the concept of  related messages refers to 

Lamport message ordering and its happened-before 

relationship. Here, concurrent messages will not be 

ordered. Messages are sequenced strictly by their 

Lamport timestamps. 

Relaxing the rules even more, we can decide that ordering does not matter at all and messages 

can be received in a different order at different machines. However, we can provide a special 

message type: a synchronization (sync) primitive that can be sent to ensure that any pending 

messages are processed before any additional  (post-sync) messages will be accepted. This 

means that if a message is sent, it will be processed by all members before the synchronization 

operation. Any message sent after a member sends a sync message will be processed by all 

members after the sync. Message delivery is not split on either side of the sync. A sync is also 

known as barrier. This type of message ordering is known as sync ordering. 

Finally, the most relaxed form of message delivery is the unordered multicast. Messages can 

be delivered in a different order to different members. We may impose sequential ordering per 

source, which means that all messages sent from one member will be received in the order sent 

by all members, although members may receive different interleaved messages from others. 

 

IP multicasting 

As an example of a commonly-used multicasting protocol, we can consider IP multicasting. 

Multicasting under the Internet Protocol is performed by addressing IP packets with a multicast 

address. The class D network was created for this. A class D address contains four leading bits of 

1110 followed by a 28-bit multicast ID number. This spans the IP addresses from 224.0.0.0 

through 239.255.255.255 (Figure 5). The set of all machines listening to a particular multicast 

address make up a host group. These machines can span multiple physical networks. 

Membership is dynamic – a machine can leave or join a group at any time and there is no 

restriction on the number of hosts in a group. A machine does not have to be a member of the 

group to send messages to the group. 

A multicast address may be chosen arbitrarily, but some well-known host group addresses are 

assigned by the IANA (Internet Assigned Numbers Authority). IANA information can be found in 

RFC 1340. This is similar to port numbers: arbitrary ports may be chosen but certain numbers are 
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reserved for known applications. For example, some well-known ports are 21 for FTP, 25 for 

SMTP, 80 for HTTP. Some well-known multicast addresses are 244.0.0.1 for all systems on this 

subnet, 224.0.1.2 for SGI's Dogfight, and 224.0.1.7 for the Audionews service. 

LAN multicasting 

Since IP is a logical network built on top of physical networks, it is worthwhile to examine how 

multicasting works on LAN cards (e.g. an ethernet card). LAN cards that support multicast 

support it in one of two ways: 

1. Packets are filtered based on a hash value of the multicast hardware address (some 

unwanted packets may pass through because of hash collisions. 

2. The LAN card supports a small, fixed number of multicast addresses on which to listen. 

If the host needs to receive more, the LAN card is put in a multicast promiscuous mode 

to receive all hardware multicast packets. 

In either case, the device driver must check that the received packet is really the one that is 

needed. Even if the LAN card performed perfect filtering, there may still need to be a need to 

translate a 28-bit IP multicast ID to the hardware address (e.g. a 48-bit ethernet address). The 

translation of IP multicast ID numbers to ethernet addresses is defined by the IANA (Internet 

Assigned Numbers Authority), which decrees that the least significant 23 bits of the IP address 

are copied into an ethernet MAC address of the form 01:00:5e:xx:xx:xx. 

IP multicasting on a single network 

On a single physical network, the sender specifies a destination IP address that is a multicast 

address (class D). The device driver then converts this address to a corresponding ethernet 

address and uses this address in its hardware header (which envelopes the IP header). Now it 

sends out this multicast ethernet packet which contains a multicast IP packet within it. 

When a process wishes to receive multicast packets, it notifies the IP layer that it wants to receive 

datagrams destined for a certain IP address. The device driver has to enable reception of 

ethernet packets that contain that IP multicast address. This action is known as joining a 

multicast group. 

Upon receiving such packets, the device driver sends the IP packet to the IP layer, which must 

deliver a copy of the packet to all processes that belong to the group.  

IP multicasting beyond the physical network 

When IP packets flow through multiple physical networks, they go through routers which bridge 

one network to another. In the case of multicasting, a multicast-aware routed needs to know 

whether there are any hosts on a physical network that belong to a multicast group. 

The Internet Group Management Protocol (IGMP, RFC 1112) is designed to accomplish this task. 

It is a simple datagram based protocol that is similar in principle to ICMP. Packets are fixed-size 

messages containing a 20-byte IP header, and 8 bytes of IGMP data. This data includes: 

- 4-bit version number 

- 4-bit operation type (1=query sent by router, 2=response) 
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- 16-bit checksum 

- 32-bit IP class D address 

 

The IGMP protocol works as follows: 

- When the first process on a machine joins a multicast group, the machine sends an 

IGMP report stating that it is interested in that particular multicast address. 

- Each multicast router broadcasts IGMP queries at regular intervals to see whether any 

machines still have processes belonging to any groups. One query is sent per network 

interface. 

- When a machine receives an IGMP query, it sends one IGMP response packet for 

each group for which it is still interested in receiving packets. 

The machine never sends a report when a process leaves the group (even if it is the last process 

that joined the group. Eventually the multicast router will stop forwarding packets to the network 

when it receives no IGMP responses for a particular multicast address. 
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