Distributed Systems

Clock Synchronization:
Physical Clocks

Paul Krzyzanowski
pxk@cs.rutgers.edu

Except as otherwise noted, the content of this presentation is licensed under the Creative Commons
Attribution 2.5 License.

What's it for?

+ Temporal ordering of events produced by
concurrent processes

» Synchronization between senders and
receivers of messages

» Coordination of joint activity

- Serialization of concurrent access for shared
objects

Physical clocks

Logical vs. physical clocks

Logical clock keeps track of event ordering
- among related (causal) events

Physical clocks keep time of day
- Consistent across systems

Quartz clocks

- 1880: Piezoelectric effect
- Curie brothers
- Squeeze a quartz crystal & it generates an electric field
- Apply an electric field and it bends

- 1929: Quartz crystal clock
- Resonator shaped like tuning fork
- Laser-trimmed to vibrate at 32,768 Hz
- Standard resonators accurate to 6 parts per million at 31° C
- Watch will gain/lose < 3 sec/day
- Stability > accuracy: stable to 2 sec/month

- Good resonator can have accuracy of 1 second in 10 years
* Frequency changes with age, femperature, and acceleration

Atomic clocks
+ Second is defined as 9,192,631,770 periods of

radiation corresponding to the transition
between two hyperfine levels of cesium-133

- Accuracy:
better than 1 second in six million years

« NIST standard since 1960

UTC

- UTO

- Mean solar time on Greenwich meridian
- Obtained from astronomical observation

- UT1
- UTO corrected for polar motion
VN

- UT1 corrected for seasonal variations in Earth's
rotation

- UTC

- Civil time measured on an atomic time scale

UTC

» Coordinated Universal Time
+ Temps Universel Coordonné

- Kept within 0.9 seconds of UT1

- Atomic clocks cannot keep mean time
* Mean time is a measure of Earth's rotation

Physical clocks in computers

Real-time Clock: CMOS clock (counter) circuit
driven by a quartz oscillator

- battery backup to continue measuring time when
power is of f

OS generally programs a timer circuit to

generate an interrupt periodically

- eg., 60, 100, 250, 1000 interrupts per second
(Linux 2.6+ adjustable up to 1000 Hz)

- Programmable Interval Timer (PIT) - Intel 8253, 8254
- Interrupt service procedure adds 1 to a counter in memory

Problem

Getting two systems to agree on time
- Two clocks hardly ever agree

- Quartz oscillators oscillate at slightly different
frequencies

Clocks tick at different rates
- Create ever-widening gap in perceived time
- Clock Drift

Difference between two clocks at one point in time
- Clock Skew

8:00:00 8:00:00

Sept 18, 2006
8:00:00

8:01:24 8:01:48
Skew = +84 seconds Oct 23, 2006 Skew = +108 seconds

+84 seconds/35 days PN +108 seconds/35 days
Drift = +2.4 sec/day 8:00:00 Drift = +3.1 sec/day

Perfect clock

Computer's time, €

UTC time, 1

Drift with slow clock

Computer’s time, €

UTC time, #

Drift with fast clock

Computer’s time, €

UTC time, 1

Dealing with drift

Assume we set computer to true time

Not good idea to set clock back

- Illusion of time moving backwards can confuse
message ordering and software development
environments

Dealing with drift

Go for gradual clock correction

If fast:

Make clock run slower until it synchronizes

If slow:
Make clock run faster until it synchronizes

Dealing with drift

OS can do this:

Change rate at which it requests interrupts

e.g.:
if system requests interrupts every
17 msec but clock is too slow:
request interrupts at (e.g.) 15 msec

Or software correction: redefine the interval

Adjustment changes slope of system time:
Linear compensating function

Compensating for a fast clock

/

M Clock synchronized
Linear compensating

function applied

Computer’s time, €

UTC time, 1

Compensating for a fast clock

Computer’s time, C

UTC time, ¢

Resynchronizing

After synchronization period is reached
- Resynchronize periodically

- Successive application of a second linear
compensating function can bring us closer to true
slope

Keep track of adjustments and apply
continuously

- e.g., UNIX adjtime system call

Getting accurate time

* Attach GPS receiver to each computer
+ 1 msec of UTC

- Attach WWYV radio receiver
Obtain time broadcasts from Boulder or DC
+ 3 msec of UTC (depending on distance)

- Attach GOES receiver
+ 0.1 msec of UTC

Not practical solution for every machine
- Cost, size, convenience, environment

Getting accurate time

Synchronize from another machine
- One with a more accurate clock

Machine/service that provides time information:

Time server

RPC

Simplest synchronization technique
- Tssue RPC to obtain time
- Set time

C||en'|' Whaf:f 7‘/76 time? server

Does not account for network or
processing latency

Cristian's algorithm

Compensate for delays

- Note times:
* request sent: T,
* reply received: T,
- Assume network delays are symmetric

i 5'2/”Ve/"

server <
/"equesf/ \mp/y
! >

client :
fime

Cristian's algorithm

Client sets time to:

i serve/"
server >
/"equesf/ \mp/y
client >
Y fime
A —7.:':. .
> = estimated overhead
in each direction
T, -,
_ 1 0
7:;3!# I Tserver + 2

Error bounds
If minimum message transit time (T,,) is known:

Place bounds on accuracy of result

Error bounds

r

i server

server >

client >,
TO‘—Y—’ ‘—y—’ T, fime
Tin T in
Earliest time Latest time
message arrives message leaves
range = T1'T0‘2Tmin
I —T
accuracy of result = +-! > > T n

Cristian's algorithm: example

- Send request at 5:08:15.100 (7))

» Receive response at 5:08:15.900 (7))
- Response contains 5:09:25.300 (7,,,.,)

* Elapsed time is 7;- T,
5:08:15.900 - 5:08:15.100 = 800 msec

- Best guess: timestamp was generated
400 msec ago

- Set time to T, .+ elapsed time
5:09:25.300 + 400 = 5:09.25.700

Cristian's algorithm: example

If best-case message time=200 msec Tp= 5:08:15.100
T,= 5:08:15.900

T.= 5:09:25:300
T,..,= 200msec

i sef"ver'
server
requesf/ \mp/y
client >
—— T, time
200 200
J
~
800
Error= + 900-100 -200 = +@ —200=1200

2 2

Berkeley Algorithm

- Gusella & Zatti, 1989

- Assumes ho machine has an accurate time
source

- Obtains average from participating computers
» Synchronizes all clocks to average

Berkeley Algorithm

* Machines run time daeemon
- Process that implements protocol

* One machine is elected (or designated) as the
server (master)

- Others are slaves

Berkeley Algorithm

* Master polls each machine periodically

- Ask each machine for time

» Can use Cristian's algorithm to compensate for network
latency

* When results are in, compute average
- Including master’s time

* Hope: average cancels out individual clocks
tendencies to run fast or slow

+ Send offset by which each clock needs
adjustment to each slave

- Avoids problems with network delays if we send a
Time stamp

Berkeley Algorithm

Algorithm has provisions for ighoring readings
from clocks whose skew is too great
- Compute a fault-tolerant average

If master fails
- Any slave can take over

Berkeley Algorithm: example

1. Request timestamps from all slaves

Berkeley Algorithm: example

2. Compute fault-tolerant average:

3.25+2:50+3.00

=3.05
3

Berkeley Algorithm: example

3. Send offset to each client

Network Time Protocol, NTP

1991, 1992
Internet Standard, version 3: RFC 1305

NTP Goals

Enable clients across Internet to be accurately
synchronized to UTC despite message delays

- Use statistical techniques to filter data and gauge quality of
results

Provide reliable service

- Survive lengthy losses of connectivity

- Redundant paths

- Redundant servers

Enable clients to synchronize frequently
- offset effects of clock drift

Provide protection against interference
- Authenticate source of data

NTP servers

Arranged in strata

- 1st stratum: machines
connected directly to
accurate time source

- 2 stratum: machines
synchronized from 1st
stratum machines

SYNCHRONIZATION SUBNET

NTP Synchronization Modes

Multicast mode
- for high speed LANS
- Lower accuracy but efficient

Procedure call mode
- Similar to Cristian's algorithm
Symmetric mode

- Intended for master servers

- Pair of servers exchange messages and retain data
to improve synchronization over time

All messages delivered unreliably with UDP

NTP messages

Procedure call and symmetric mode
- Messages exchanged in pairs
NTP calculates:
- Offset for each pair of messages
+ Estimate of offset between two clocks
- Delay
» Transmit time between two messages

- Filter Dispersion
+ Estimate of error - quality of results

* Based on accuracy of server's clock and consistency of
network transit time

Use this data to find preferred server:
- Jower stratum & lowest total dispersion

NTP message structure

- Leap second indicator
- Last minute has 59, 60, 61 seconds

+ Version number
* Mode (symmetric, unicast, broadcast)
» Stratum (1=primary reference, 2-15)

- Poll interval

- Maximum interval between 2 successive messages,
nearest power of 2

* Precision of local clock
- Nearest power of 2

NTP message structure

* Root delay
- Total roundtrip delay to primary source
- (16 bits seconds, 16 bits decimal)
* Root dispersion
- Nominal error relative to primary source
» Reference clock ID

- Atomic, NIST dial-up, radio, LORAN-C navigation
system, GOES, GPS, ...

* Reference timestamp

- Time at which clock was last set (64 bit)
- Authenticator (key ID, digest)

- Signature (ignored in SNTP)

NTP message structure

- Ty originate timestamp
- Time request departed client (client’s time)
- T,: receive timestamp
- Time request arrived at server (server's time)

- T3t transmit fimestamp
- Time request left server (server's time)

NTP's validation tests

+ Timestamp provided # last timestamp received
- duplicate message?

- Originating timestamp in message consistent with
sent data
- Messages arriving in order?

+ Timestamp within range?
» Originating and received timestamps z 0?
Authentication disabled? Else authenticate
* Peer clock is synchronized?
Don't sync with clock of higher stratum #
» Reasonable data for delay & dispersion

SNTP

Simple Network Time Protocol
- Based on Unicast mode of NTP
- Subset of NTP, not new protocol
- Operates in multicast or procedure call mode

- Recommended for environments where server is
root node and client is leaf of synchronization
subnet

- Root delay, root dispersion, reference timestamp
ighored

RFC 2030, October 1996

SNTP

LE: LE
server >
requesf/v \wp/y
>
T Ty

client '
fime

Roundtrip delay: Time offset:

A= (T T)-(ToT) R A

SNTP example
T,=800 T,=850

server >
request reply .
7‘//11@

client
T,=1100 T,=1200

Offset =
((800 - 1100) + (850 - 1200))/2
=((-300) + (-350))/2
- _650/2 = -325 Time offset:
 (T-T)+(%-T,)

Set time to T, + ¢ 2
= 1200 - 325 = 875

Cristian's algorithm
T,=800 T,=850

server >
reguest _L reply _
/ T=825 \ 7‘//112

client
T,=1100 T,=1200

Offset = (1200 - 1100)/2 = 50

Set time to T, + offset
= 825 +50 =875

Key Points: Physical Clocks

» Cristian’'s algorithm & SNTP
- Set clock from server
- But account for network delays

- Error: uncertainty due to network/processor
latency: errors are additive
+10 msec and +20 msec = +30 msec.

» Adjust for local clock skew
- Linear compensating function

The end.

