Distributed Systems

Logical Clocks

Paul Krzyzanowski
pxk@cs.rutgers.edu

Except as otherwise noted, the content of this presentation is licensed under the Creative Commons
Attribution 2.5 License.

Logical clocks

Assign sequence numbers to messages

- All cooperating processes can agree on order of
events

- vs. physical clocks: time of day

Assume no central time source
- Each system maintains its own local clock

- No total ordering of events
* No concept of happened-when

Happened-before
Lamport's “*happened-before” notation

a - b event ahappened before event b
eg.: a. message being sent, b: message receipt

Transitive:
ifa— band b - cthena — ¢

Logical clocks & concurrency

Assigh "clock” value to each event
- if a—=b then clock(a) < clock(b)
- since time cannot run backwards

If aand b occur on different processes that do
not exchange messages, then neither a — b nor
b — aare true

- These events are concurrent

Event counting example

* Three systems: P, Py, P,
- Events a, b, ¢, ...
* Local event counter on each system

- Systems occasionally communicate

Event counting example

P > Ce >
3P 4 5\ 6.

p J >

2 1 >° \)

Ps 1. 2 g

Event counting example

P > Ce >
3P 4 5\ 6.
P2 91 2 ”
\ k
P, * >

Bad or'der'ing:

e > h
f >k

Lamport’s algorithm

+ Each message carries a timestamp of the
sender’s clock

- When a message arrives:

- if receiver's clock < message timestamp
set system clock to (message timestamp + 1)

- else do nothing

» Clock must be advanced between any two
events in the same process

Lamport's algorithm

Algorithm allows us to maintain time ordering
among related events
- Partial ordering

Event counting example

a b ¢ d e
P1 1. 20 3 40 5‘ 6& >
P2 94/ /2, ‘ >
: | 7
> g/ © \.k X
3 1 27

>

Summary

» Algorithm needs monotonically increasing
software counter

- Incremented at least when events that need
to be timestamped occur

» Each event has a Lamport timestamp
attached to it

* For any two events, where a — b:
L(a) < L(b)

Problem: Identical timestamps
2
858, /v»éx
] /*K X\
RN,

a—b, b—c, ... local events sequenced

i—c, f—>d ,d—g, ... Lamport imposes a
send—receive relationship

Concurrent events (e.g., a & i) may have
the same timestamp .. or not

Unique timestamps (total ordering)

We can force each timestamp to be unique

- Define global logical timestamp (T;, i)
» T, represents local Lamport timestamp
* i represents process number (globally unique)

- E.g. (host address, process ID)
- Compare timestamps:
(T,)< (T,)
if and only if
T.<T or

J

T.=T, and i<

Does not relate to event ordering

Unique (totally ordered) timestamps

Problem: Detecting causal relations

If L(e)<L(e)

- Cannot conclude that e—e'

Looking at Lamport timestamps
- Cannot conclude which events are causally related

Solution: use a vector clock

Vector clocks

Rules:

1. Vector initialized 1o O at each process
V,[1=0for i j=1, ., N
2. Process increments its element of the vector
in local vector before timestamping event:
Vilad=V;[1+1
3. Message is sent from process P, with V;
attached fo it

4. When P ;receives message, compares vectors
element by element and sets local vector to
higher of two values

V,[1=max(V,[1, V,;[]) fori=1, ., N

Comparing vector timestamps

Define
V=Viff V[/1=V[/] for/i=1.. N
V<Viff V[/1<V[/] fori=1._. N

For any two events e, e’
if e > e then V(e)«< V(e)

» Just like Lamport's algorithm

if V(e) < V(e') thene — ¢

Two events are concurrent if neither
V(e) < V(e') nor V(e') < V(e)

Vector timestamps

(0,00) 4 b
P, —e
(O,O,F?) S d
2
(0,0,0) e .\j

Vector timestamps

(1,0,0)

(0,0,0) "q " b
P, —e
(0.0,0) C d
P, o 0\
0,0,0
(P3) g i
Event timestamp

a (1,0,0)

Vector timestamps

(OOO)(I ,0,0) (200)

P 0
(O,O,O) \c d

p ¢
(0.0,5) g .\j

Event timestamp
a (1,0,0)
b (2,0,0)

Vector timestamps

(000)(1 ,0,0) (z 0,0)

.
0,0.0) .\‘251'0) y

P O
(0,0,0) ¢ \I

£
Event timestamp
a (1,0,0)
b (2,0,0)

C (2,1,0)

S
r fimestamp
to

Vec

O, 0’2)

0)
100) (zo
(

0)
2,1,0) (232'
\g

(0.0 Fg)
(0.0,0)

£

N

mp
Times’)ra
T (1,0,0)
Even 155

: (2,1,0)
: (2,2,0)
C
d

Vector timestamps

(0,0,0)

(100) (200)

.\(ZC, 1,0) (Z,CF,O)

0,0 1. .\

e(.0,1) ;
Event timestamp

a (1,0,0)

b (2,0,0)

C (2,1,0)

d (2,2,0)

e (0,0,1)

Vector timestamps

(100) (200)

(0,0,0)
P —e
(0.0.0) .\‘Zé“’) "
P ¢
(0.0.0) 0.0.1) \ f2.2,2)
P, o o
Event timestamp
a (1,0,0)
b (2,0,0)
C (2,1,0)
d (2,2,0)
e (0,0,1)
f (2,2,2)

Vector timestamps

: ',
@ >
‘\(261,0) (2,(12,0)
| EERNEE

Event timestamp

concurrent
A AV S

(2,2,2)

Vector timestamps

0.0 0)(1 ,0,0) (z 0,0)

(0,0,0) y .\(zc,m) (2.2.0)
o 0,0,1) 2,2,2 ”
©00 %D N 222

P, N
Event timestamp
a (1,0,0)
b (2,0,0) concurrent
¢ (2,1,0) > events
d (2,2,0)
e (0,0,1)
f (2,2,2)

Vector timestamps

0.0 0)(1 ,0,0) (z 0,0)

O
0,0,0 (2,1,0) (2,2.0)
L L —
(0,0,0) 3(,0,1) \ 2,2,2)

Event timestamp

(1,0,0)

(2,0,0)

(2.1,0) concurrent
(2,2,0) events
(0,0,1)

(2,2,2)

+~00 OO0 OB

Vector timestamps

0.0 0)(1 ,0,0) (z 0,0)

(0,0,0) y .\(zc,m) (2.2.0)
o 0,0,1) 2,2,2 ”
©00 %D N 222

Event timestamp
(1,0,0)
(2,0,0)

(2,10)
¥0) concurrent

(0,0,1) _— events
(2.2,2)

+~00 OO0 OB

Summary: Logical Clocks & Partial Ordering

» Causality
- If a->b then event a can affect event b

- Concurrency

- If neither a->b nor b->a then one event cannot
affect the other

» Partial Ordering
- Causal events are sequenced

» Total Ordering

- All events are sequenced

The end.

