Distributed Systems

Logical Clocks

Paul Krzyzanowski
pxk@cs.rutgers.edu

Except as otherwise noted, the content of this presentation is licensed under the Creative Commons
Attribution 2.5 License.

Happened-before
Lamport's “*happened-before” notation

a —» b event ahappened before event b
eg. a: message being sent, b: message receipt

Transitive:
ifa— band b - cthena —» ¢

Event counting example

+ Three systems: Py, P, P,
+ Events q, b, ¢, ..
+ Local event counter on each system

+ Systems occasionally communicate

Logical clocks

Assign sequence numbers to messages

- All cooperating processes can agree on order of
events

- vs. physical clocks: time of day

Assume no central time source
- Each system maintains its own local clock

- No total ordering of events
* No concept of happened-when

Logical clocks & concurrency

Assign “clock” value to each event
- if a—»b then clock(a) < clock(b)
- since time cannot run backwards

If aand b occur on different processes that do
not exchange messages, then neither a — b nor
b — aare true

- These events are concurrent

Event counting example

Event counting example

Bad ordering:
e>h
f>k

Lamport's algorithm
Algorithm allows us to maintain time ordering

among related events
- Partial ordering

Summary

+ Algorithm needs monotonically increasing
software counter

« Incremented at least when events that need
to be timestamped occur

+ Each event has a Lamport timestamp
attached to it

+ For any two events, where a — b:
L(a) < L(b)

Lamport's algorithm

- Each message carries a timestamp of the
sender’s clock

+ When a message arrives:

- if receiver's clock < message timestamp
set system clock to (message timestamp + 1)

- else do nothing

+ Clock must be advanced between any two
events in the same process

Event counting example

Problem: Identical timestamps

a—b, b—c, ... local events sequenced

i—>c, f—»d,d—g, ... Lamport imposes a
send->receive relationship

Concurrent events (e.g., a & i) may have
the same timestamp ... or not

Unique timestamps (total ordering)

We can force each timestamp to be unique
- Define global logical timestamp (T;, i)

+ T, represents local Lamport timestamp
+ i represents process number (globally unique)
- E.g. (host address, process ID)
- Compare timestamps:
(Ti,) < (T3, §)
if and only if
Ti<T, or

J

Ti=T;andi<]

Does not relate to event ordering

Problem: Detecting causal relations

If L(e)<L(e)

- Cannot conclude that e—e’

Looking at Lamport timestamps
- Cannot conclude which events are causally related

Solution: use a vector clock

Comparing vector timestamps

Define
V=Viff V[/1=V[/] fori=1. N
V<Viff V[71<V[/] fori=1.. N
For any two events e, e’
if e > e' then V(e) < V(e)
+ Just like Lamport's algorithm
if V(e) < V(e') thene — e’

Two events are concurrent if neither
V(e) < V(e') nor V(e') < V(e)

Unique (totally ordered) timestamps

Vector clocks

Rules:
1. Vector initialized to O at each process
V.lj1=0for/ j=1,.., N
2. Process increments its element of the vector
in local vector before timestamping event:
Vild=V,[]+1
. Message is sent from process P, with V;,
attached to it

. When P, receives message, compares vectors
element by element and sets local vector to
higher of two values

V[= max(V,[4, V,;[7) fori=l, .., N

Vector timestamps

(0.0,0) b

P, 4—'\—'
(0,0,0) c d

P
(0,0,0) g < i

Ps

Vector timestamps

©.0 0)(1 0.0)
P —

a (1,0,0)

Vector timestamps

(000)(100) (2,0,0)

(1,0,0)
b (2,0,0)
c (2,1,0)

Vector ftimestamps

0,0,0§1-%,0) 2.0.0)

P
(o,o,rg) 2.1.0) 2.0

3

Event timestamp
a)
b (2,0,0)
c (2.1,0)
d (2,2,0)
e (0,0.1)

Vector timestamps

(000)(100)(200)

o. 0P0) .)
o,o,o—'—.\—'
00 4 Ny

Event timestamp
a (1,0,0)
b (2,00)

Vector timestamps

©,0,0{1%:0) (2.0.0)

(oo%) (2.1.0) (2,2.0)
N

©.0 0)_.—\I—,

Event timestam
a (1,0,0)
b (2,0,0)
c (2,1,0)
d (2,2.0)

Vector timestamps

(000)(100)(200)

(o,o,%) (2,1.0) (2,2.0)

(0,0 é) 0,0.1)](2’2'2)
Tp—&— N

Event timestamp
(1,0,0)
(2,0,0)
(2.1,0)
(2,2,0)
(0,0,1)
(2,2,2)

Vector timestamps

(000)(100) (2,0,0)

(o,o,%) (2,1.0) 2,2.9)
(0.0,%)TM§—W
P

3

Event timestamp
(1,0,0)
(2,0,0) concurrent
(210 events
(2,2,0)
(0,0.1)
2,2,2)

Vector timestamps

(000)(100) (2,0,0)

(o,o,%) (2,1.0) (2,2.0)
(o,o,%)w—w
P

3

Event timestamp
(1,0,0)
(2,0,0)
(21,0) concurrent
(2,2,0) events
(0,0,1)
2,2,2)

Summary: Logical Clocks & Partial Ordering

+ Causality
- If a->b then event acan affect event b
+ Concurrency

- If neither a->b nor b->a then one event cannot
affect the other

+ Partial Ordering
- Causal events are sequenced
+ Total Ordering

- All events are sequenced

Vector timestamps

(000)(100)(200)

Event timestamp
(1,0,0)

(2,00 concurrent
(2,1,0) > events
(2,2,0)

(0,0

(22.2)

Vector timestamps

(ooo)(100)(200)

(o,o,%) (2.1.0) (2,2.0)
(o,o,%)W
P

3

Event timestamp
a (1,0,0)
b (2,0,0)
c (2,1,0)
d (2,2,0) concurrent
e (0,0,1) events
f 2,2,2)

