
Rutgers University – CS 417: Distributed Systems
©2000-2002 Paul Krzyzanowski 1

Lectures on distributed systems

Remote Procedure Calls

Paul Krzyzanowski

Introduction, or what’s wrong with sockets?
OCKETS are a fundamental part of client-server networking. They provide a
relatively easy mechanism for a program to establish a connection to another

program, either on a remote or local machine and send messages back and forth
(we can even use read and write system calls). This interface, however, forces us
to design our distributed applications using a read/write (input/output) inter-
face which is not how we generally design non-distributed applications. In design-
ing centralized applications, the procedure call is usually the standard interface
model. If we want to make distributed computing look like centralized comput-
ing, input-output-based communications is not the way to accomplish this.

In 1984, Birrell and Nelson devised a mechanism to allow programs to call
procedures on other machines. A process on machine A can call a procedure on
machine B. The process on A is suspended and execution continues on B. When
B returns, the return value is passed to A and A continues execution. This
mechanism is called the Remote Procedure Call (RPC). To the programmer, the
goal is that it should appear as if a normal procedure call is taking place. Obvi-
ously, a remote procedure call is different from a local one in the underlying
implementation.

Steps in a remote procedure call
Clearly, there is no architectural support for making remote procedure calls. A
local procedure call generally involves placing the calling parameters on the
stack and executing some form of a call instruction to the address of the proce-
dure. The procedure can read the parameters from the stack, do its work, place
the return value in a register and then return to the address on top of the stack.
None of this exists for calling remote procedures. We’ll have to simulate it all
with the tools that we do have, namely local procedure calls and sockets for net-
work communication. This simulation makes remote procedure calls a language-
level construct as opposed to sockets, which are an operating system level construct.
This means that our compiler will have to know that remote procedure call invo-
cations need the presence of special code.

S

Remote Procedure Call

Rutgers University – CS 417: Distributed Systems
©2000-2002 Paul Krzyzanowski 2

The entire trick in making remote procedure calls work is in the creation of
stub functions that make it appear to the user that the call is really local. A stub
function looks like the function that the user intends to call but really contains
code for sending and receiving messages over a network. The following se-
quence of operations takes place (from p. 693 of W. Richard Steven’s UNIX Net-
work Programming):

The sequence of operations, depicted in Figure 1, is:
1. The client calls a local procedure, called the client stub. To the client

process, it appears that this is the actual procedure. The client stub
packages the arguments to the remote procedure (this may involve
converting them to a standard format) and builds one or more net-
work messages. The packaging of arguments into a network message is
called marshaling.

2. Network messages are sent by the client stub to the remote system (via
a system call to the local kernel).

3. Network messages are transferred by the kernel to the remote system
via some protocol (either connectionless or connection-oriented).

4. A server stub procedure on the server receives the messages. It unmar-
shals the arguments from the messages and possibly converts them
from a standard form into a machine-specific form.

5. The server stub executes a local procedure call to the actual server
function, passing it the arguments that it received from the client.

6. When the server is finished, it returns to the server stub with its return
values.

7. The server stub converts the return values (if necessary) and marshals
them into one or more network messages to send to the client stub.

8. Messages get sent back across the network to the client stub.

Figure 1. Functional steps in a remote procedure call

client functions

client stub

network routines

server functions

server stub

network routines

1

2
3

4

56

7

8

9

10

Client
process

kernel kernel

Server
process

Remote Procedure Call

Rutgers University – CS 417: Distributed Systems
©2000-2002 Paul Krzyzanowski 3

9. The client stub reads the messages from the local kernel.

10. It then returns the results to the client function (possibly converting
them first).

The client code then continues its execution…

The major benefits of RPC are twofold: the programmer can now use proce-
dure call semantics and writing distributed applications is simplified because
RPC hides all of the network code into stub functions. Application programs
don’t have to worry about details (such as sockets, port numbers, byte ordering).
Using the OSI reference model, RPC is a presentation layer service.

Several issues arise when we think about implementing such a facility:

How do you pass parameters?
Passing by value is simple (just copy the value into the network message). Passing
by reference is hard – it makes no sense to pass an address to a remote machine.
If you want to support passing by reference, you'll have to copy the items refer-
enced to ship them over and then copy the new values back to the reference. If
remote procedure calls are to support more complex structures, such as trees
and linked lists, they will have to copy the structure into a pointerless representa-
tion (e.g., a flattened tree), transmit it, and reconstruct the data structure on the
remote side.

How do we represent data?
On a local system there are no data incompatibility problems—the data format is
always the same. With RPC, a remote machine may have different byte ordering,
different sizes of integers, and a different floating point representation. The
problem was solved in the IP protocol suiteby forcing everyone to use big endian1
byte ordering for all 16 and 32 bit fields in headers (hence the htons and htonl
functions). For RPC, we need to select a “standard” encoding for all data types
that can be passed as parameters if we are to communicate with heterogeneous
systems. Sun’s RPC, for example, uses XDR (eXternal Data Representation) for
this process. Most data representation implementations use implicit typing (only
the value is transmitted, not the type of the variable). The ISO data
representation (ASN.1—Abstract Syntax Notation) uses explicit typing, where the
type of each field is transmitted along with the value.

1 Big endian storage stores the most significant byte(s) in low memory. Little endian storage stores
the most significant byte(s) of a word in high memory. Machines such as Sun Sparcs and 680x0s
use big endian storage. Machines such as Intel x86/Pentium, Vaxen, and PDP-11s use little endian.

Remote Procedure Call

Rutgers University – CS 417: Distributed Systems
©2000-2002 Paul Krzyzanowski 4

What should we bind to?
We need to locate a remote host and the proper process (port or transport
address) on that host. Two solutions can be used. One solution is to maintain a
centralized database that can locate a host that provides a type of service
(proposed by Birell and Nelson in 1984). A server sends a message to a central
authority stating its willingness to accept certain remote procedure calls. Clients
then contact this central authority when they need to locate a service. Another
solution, less elegant but easier to administer, is to require the client to know
which host it needs to contact. A server on that host maintains a database of
locally provided services.

What transport protocol should be used?
Some implementations allow only one to be used (e.g. TCP). Most RPC
implementations support several and allow the user to choose.

What happens when things go wrong?
There are more opportunities for errors now. A server can generate an error,
there might be problems in the network, the server can crash, or the client can
disappear while the server is running code for it. The transparency of remote
procedure calls breaks here since local procedure calls have no concept of the
failure of the procedure call. Because of this, programs using remote procedure
calls have to be prepared to either test for the failure of a remote procedure call
or catch an exception.

What are the semantics of calling remote procedures?
The semantics of calling a regular procedure are simple: a procedure is executed
exactly once when we call it. With a remote procedure, the “exactly once” aspect
is quite difficult to achieve. A remote procedure may be executed:

 0 times if the server crashed or process died before running the server
code.

 once if everything works fine.
 once or more if the server crashed after returning to the server stub but

before sending the response. The client won’t get the return response and
may decide to try again, thus executing the function more than once. If it
doesn’t try again, the function is executed once.

 more than once if the client times out and retransmits. It’s possible that
the original request may have been delayed. Both may get executed (or
not).

Remote Procedure Call

Rutgers University – CS 417: Distributed Systems
©2000-2002 Paul Krzyzanowski 5

IDL
com-

RPC
Interface
Definition

(IDL)

Client
executable

Server
executable

Headers

Server stub

Client stub

Server
program

Client
program

compiler

compiler

Figure 2. Compilation steps for Remote Procedure Calls

If a function may be run any number of times without harm, it is idempotent
(e.g., time of day, math functions, read static data).
Otherwise, it is a nonidempotent function (e.g., append
or modify a file).

What about
performance?
A regular procedure call is
fast—typically only a few
instruction cycles. What

about a remote procedure call?
Think of the extra steps
involved. Just calling the client stub function and getting a return from it incurs
the overhead of a procedure call. On top of that, we need to execute the code to
marshal parameters, call the network routines in the OS (incurring a context
switch), deal with network latency, have the server receive the message and
switch to the server process, unmarshal parameters, call the server function, and
do it all over again on the return trip. Without a doubt a remote procedure call
will be much slower.

What about security?
This is something to worry about. More on this later…

Programming with remote procedure calls
Most popular languages today (C, C++, Java, Scheme, et alia) have no concept of
remote procedures and are therefore incapable of generating the necessary stub
functions. To enable the use of remote procedure calls with these languages, the
commonly adopted solution is to provide a separate compiler that generates the
client and server stub functions. This compiler takes its input from a program-
mer-specified definition of the remote procedure call interface. Such a defini-
tion is written in an interface definition language.

The interface definition generally looks similar to function prototype decla-
rations: it enumerates the set of functions along with input and return parame-
ters. After the RPC compiler is run, the client and server programs can be com-
piled and linked with the appropriate stub functions (Figure 2). The client
procedure has to be modified to initialize the RPC mechanism (e.g. locate the
server and possibly establish a connection) and to handle the failure of remote
procedure calls.

Remote Procedure Call

Rutgers University – CS 417: Distributed Systems
©2000-2002 Paul Krzyzanowski 6

Advantages of RPC
 You don’t have to worry about getting a unique transport address (a

socket on a machine). The server can bind to any port and register the
port with its RPC name server. The client will contact this name server
and request the port number that corresponds to the program it needs.

 The system is transport independent. This makes code more portable to
environments that may have different transport providers in use. It also
allows processes on a server to make themselves available over every
transport provider on a system.

 Applications on the client only need to know one transport address—that
of the rpcbind (or portmap) process.

 The function-call model can be used instead of the send/receive
(read/write) interface provided by sockets.

The first generation of Remote Procedure Calls

Sun’s RPC implementation (ONC RPC)
Sun Microsystem’s was one of the first systems to provide RPC libraries and a
compiler, developing it as part of their Open Network Computing (ONC) archi-
tecture in the early 1980’s. Sun provides a compiler that takes the definition of a
remote procedure interface and generates the client and server stub functions.
This compiler is called rpcgen. Before running this compiler, the programmer has
to provide the interface definition. The interface definition contains the func-
tion declarations, grouped by version numbers (to support older clients connect-
ing to a newer server) and a unique program number. The program number
enables clients to identify the interface that they need. Other components pro-
vided by Sun are XDR, the format for encoding data across heterogeneous ma-
chines and a run-time library that implements the necessary protocols and socket
routines to support RPC.

All the programmer has to write is a client procedure, the server functions,
and the RPC specification. When the RPC specification (a file suffixed with .x,
for example a file named date.x) is compiler with rpcgen, three or four files are
created. These are (for date.x):

date.h contains definitions of the program, version, and declarations of
the functions. Both the client and server functions should in-
clude this file.

date_svc.c C code to implement the server stub.

date_clnt.c C code to implement the client stub.

Remote Procedure Call

Rutgers University – CS 417: Distributed Systems
©2000-2002 Paul Krzyzanowski 7

date_xdr.c contains the XDR routines to convert data to XDR format. If this
file is generated, it should be compiled and linked in with both
the client and server functions.

If we look at the sample code (page 23), we notice that the first thing that
must be done is to compile the data definition file date.x (page 24). After that,
both the client and server functions may be compiled and linked in with the re-
spective stub functions generated by rpcgen.

The client and server functions do not have to be modified much from a lo-
cal implementation. The client must initialize the RPC interface with the func-
tion clnt_create, which creates an RPC handle to the specified program and ver-
sion on a given host. It must be called before any remote procedure calls are
issued. The parameters that we give it are the name of a server, the name of the
program, the version of the program, and the transport protocol to use. Both the
name and version of the program are obtained from the header file that was
generated by rpcgen.

In older versions of, the transport protocol would be either the string “tcp”
or the string “udp” to specify the respective IP service RPC (this is still supported
and must be used with the Linux implementation of RPC). To make the inter-
face more flexible, UNIX System V release 4 (SunOS ≥ 5) network selection rou-
tines allow a more general specification. They search a file (/etc/netconfig) for
the first provider that meets your requirements. This last argument can be:

 “netpath” search a NETPATH environment variable for a sequence of pre-
ferred transport providers)

“circuit_n” find the first virtual circuit provider in the NETPATH list), “data-
gram_n” (find the first datagram provider in the NETPATH list)

“visible” find the first visible transport provider in /etc/netconfig)

“circuit_v” find the first visible virtual circuit transport provider in
/etc/netconfig)

“datagram_v” find the first visible datagram transport provider in /etc/netconfig).

Each remote procedure call is restricted to accepting a single input parame-
ter along with the RPC handle2. It returns a pointer to the result. The server func-
tions have to be modified to accept a pointer to the value declared in the RPC
definition (.x file) as an input and return a pointer to the result value. This
pointer must be a pointer to static data (otherwise the area that is pointed to will
be undefined when the procedure returns and the procedure’s frame is freed).
The names of the RPC procedures are the names in the RPC definition file con-
verted to lower case and suffixed by an underscore followed by a version number.
For example, BIN_DATE becomes a reference to the function bin_date_1. Your

2 This restriction has now been removed and can be disabled with a command-line option to rpcgen.

Remote Procedure Call

Rutgers University – CS 417: Distributed Systems
©2000-2002 Paul Krzyzanowski 8

server must implement bin_date_1 and the client code should issue calls to
bin_date_1.

What happens when we run the program?

The server

When we start the server, the server stub runs and puts the process in the back-
ground (don’t forget to run ps to find it and kill it when you no longer need it)3.
It creates a socket and binds any local port to the socket. It then calls a function
in the RPC library, svc_register, to register the program number and version. This
contacts the port mapper. The port mapper is a separate process that is usually
started at system boot time. It keeps track of the port number, version number,
and program number. On UNIX System V release 4, this process is rpcbind. On
earlier systems, it was known as portmap.

The server then waits for a client request (i.e., it does a listen).

The client

When we start the client program, it first calls clnt_create with the name of the
remote system, program number, version number, and protocol. It contacts the
port mapper on the remote system to find the appropriate port on that system.

The client then calls the RPC stub function (bin_date_1 in this example). This
function sends a message (e.g., a datagram) to the server (using the port number
found earlier) and waits for a response. For datagram service, it will retransmit
the request a fixed number of times if the response is not received.

The message is then received by the remote system, which calls the server
function (bin_date_1) and returns the return value back to the client stub. The
client stub then returns to the client code that issued the call.

RPC in the Distributed Computing Environment (DCE RPC)
The Distributed Computing Environment (DCE) is a set of components de-
signed by the Open Software Foundation (OFS) for providing support for dis-
tributed applications and a distributed environment. After merging with
X/Open, this group is currently called The Open Group. The components in-
clude a distributed file service, a time service, a directory, service, and several
others. Of interest to us here is the DCE remote procedure call. It is very similar
to Sun’s RPC. Interfaces are written in an interface definition language called
Interface Definition Notation (IDN). Like Sun’s RPC, the interface definitions look
like function prototypes.

3 This is the default behavior. A command-line flag torpcgen disables the automatic running as a
daemon.

Remote Procedure Call

Rutgers University – CS 417: Distributed Systems
©2000-2002 Paul Krzyzanowski 9

One deficiency in Sun’s RPC is the identification of a server with a “unique”
32-bit number. While this is a far larger space than the 16-bit number space
available under sockets, it’s still not comforting to come up with a number and
hope that it’s unique. DCE’s RPC addresses this deficiency by not having the
programmer think up a number. The first step in writing an application is get-
ting a unique ID with the uuidgen program. This program generates a prototype
IDN file containing an interface ID that is guaranteed never to be used again. It
is a 128-bit value that contains a location code and time of creation encoded in
it. The user then edits the prototype file, filling in the remote procedure declara-
tions.
After this step, an IDN compiler, similar to rpcgen, generates a header, client
stub, and server stub.

Another deficiency in Sun’s RPC is that the client must know the machine on
which the server resides. It then can ask the RPC name server on that machine
for the port number corresponding to the program number that it wishes to ac-
cess. DCE supports the organization of several machines into administrative enti-
ties called cells. Every machine knows how to communicate with a machine re-
sponsible for maintaining information on cell services – the cell directory server.

With Sun’s RPC a server only registers its {program number → port mapping}
with a local name server (rpcbind). Under DCE, a server registers its endpoint
(port) on the local machine with the RPC daemon (name server) as well as regis-
tering its {program name → machine} mapping with its cell directory server.
When a client wishes to establish communication with an RPC server, it first asks
its cell directory server to locate the machine on which the server resides. The
client then talks to the RPC dæmon on that machine to get the port number of
the server process. DCE also supports more complicated searches that span cells.

Second generation RPCs: object support
As object oriented languages began to gain popularity in the late 1980’s, it was
evident that both the Sun (ONC) and DCE RPC systems did not provide any
support for instantiating remote objects from remote classes, keeping track of
instances of objects, or providing support for polymorphism4. RPC mechanism
still functioned but they did not support object oriented programming tech-
niques in an automated, transparent manner.

Microsoft DCOM
In April 1992, Microsoft released Windows 3.1 which included a mechanism

called OLE (object linking and embedding). This allowed a program to dynami-

4 Polymorphism is the ability to create different functions with the same name. The appropriate function is
invoked based on its parameters.

Remote Procedure Call

Rutgers University – CS 417: Distributed Systems
©2000-2002 Paul Krzyzanowski 10

cally link other libraries to allow facilities such as embedding a spreadsheet into a
Word document (this wasn’t a Microsoft innovation – they were just trying to
catch up to Apple). OLE evolved into something called COM (Component Ob-
ject Model). A COM object is a binary file. Programs that use COM services have
access to a standardized interface for the COM object (but not its internal struc-
tures). COM objects are named with globally unique identifiers (GUIDs) and
classes of objects are identified with class IDs. Several methods exist to create a
COM object (e.g., CoGetInstanceFromFile). The COM libraries look up the appro-
priate binary code (a DLL or executable) in the system registry, create the ob-
ject, and return an interface pointer to the caller.

DCOM (Distributed COM) was introduced with Windows NT 4.0 in 1996 and
is an extension of the Component Object Model to allow objects to communicate
between machines. Since DCOM is meant to support access to remote COM ob-
jects, a process that needs to create an object would need to supply the network
name of the server as well as the class ID. Microsoft provides a couple of mecha-
nisms for accomplishing this. The most transparent is to have the remote ma-
chine’s name fixed in the registry (or DCOM class store), associated with the
particular class ID. This way, the application is unaware that it is accessing a re-
mote object and can use the same interface pointer that it would for a local COM
object. Alternatively, an application may specify a machine name as a parameter.

A DCOM server is capable of serving objects at runtime. A service known as
the Service Control Manager (SCM), part of the DCOM library, is responsible for
connecting to the server-side SCM and requesting the creating of the object on
the server. On the server, a surrogate process is responsible for loading components
and running them. This differs from RPC models such as ONC and DCE in that
a service for a specific interface was not started a priori. This surrogate process is
capable of handling multiple clients simultaneously.

To support the identification of specific instances of a class (individual ob-
jects), DCOM provides an object naming capability called a moniker. Each in-
stance of an object can create its own moniker and pass it back to the client. The
client will then be able to refer to it later or pass the moniker to other processes.
A moniker itself is an object. Its IMoniker interface can be used to locate, activate,
and access the bound object without having any information about where the
object is located.

 Several types of monikers are supported:
 File moniker: This moniker uses the file type (e.g., “.doc”) to determine

the appropriate object (e.g., Microsoft Word). Microsoft provides support
for persistence - storing an object’s data in a file. If a file represents a
stored object, DCOM will use the class ID in the file to identify the object.

 URL moniker: This abstracts access to URLs via Internet protocols (e.g.
http, https, ftp) in a COM interface. Binding a URL moniker allows the

Remote Procedure Call

Rutgers University – CS 417: Distributed Systems
©2000-2002 Paul Krzyzanowski 11

remote data to be retrieved. Internally, the URL moniker uses the Win-
Inet API to retrieve data.

 Class moniker: This is used together with other monikers to override the
class ID lookup mechanism.

DCOM also provides some support for persistent objects via monikers.

Beneath DCOM: ORPC

Microsoft DCOM on its own does not provide remote procedure call capabilities.
It is a set of libraries that assumes that RPC is available to the system. Beneath
DCOM is Microsoft’s RPC mechanism, called Object RPC (ORPC). This is a
slight extension of the DCE RPC protocol with additions to support an Interface
Pointer Identifier (IPID), versioning information, and extensibility information.
The Interface Pointer Identifier is used to identify a specific instance of a class
where the call will be processed. It also provides the capability for referrals – re-
mote object references (IPIDs) can be passed around.

The marshaling mechanism is the same Network Data Representation (NDR)
as in DCE RPC with one new type representing a marshaled interface (IPID). To
do this marshaling, DCOM (and ORPC) needs to know methods, parameters,
and data structures. This is obtained from an interface definition language
(called MIDL, for Microsoft Interface Definition Language). As might be expected,
this is identical to DCE’s IDN with extensions for defining objects. The MIDL
files are compiled with an IDL compiler that generates C++ code for marshaling
and unmarshaling. The client side is called the proxy and the server side is called
the stub. Both are COM objects that can be loaded by the COM libraries as
needed.

Remote reference counting

A major difference for a server between object oriented programming and func-
tion-based programming is that functions persist while objects get instantiated
and deleted from their classes (the code base remains fixed but data regions are
allocated each time an object is created). For a server, this means that it must be
prepared to create new objects and know when to free up the memory (destroy
the objects) when the objects are no longer needed (there are no more refer-
ences left to the object).

Microsoft DCOM does this explicitly rather than automatically. Object life-
time is controlled by remote reference counting. A call is made to RemAddRef when
another reference to an object is added and RemRelease is called when a refer-
ences is removed. The object itself is elided on the server when the reference
count reaches zero.

This mechanism works fine but is not foolproof. If a client terminates ab-
normally, no messages were sent to decrement the reference count on objects

Remote Procedure Call

Rutgers University – CS 417: Distributed Systems
©2000-2002 Paul Krzyzanowski 12

that the client was using. To handle this case, the server associates an expiration
time for each object and relies on periodic messages from the client to keep the
object reference alive. This mechanism is called pinging. The server maintains a
ping frequency (pingPeriod) and a timeout period (numPingsToTimeOut). The
client runs a background process that sends a ping set – the IDs of all remote
objects on a specific server. If the timeout period expires with no pings received,
all references are cleared.

DCOM summary

Microsoft DCOM is a significant improvement over earlier RPC systems. The
Object RPC layer is an incremental improvement over DCE RPC and allows for
object references. The DCOM layer builds on top of COM’s access to objects (via
function tables) and provides transparency in accessing remote objects. Remote
reference management is still somewhat problematic in that it has to be done
explicitly but at least there is a mechanism for supporting this. The moniker
mechanism provides a COM interface to support naming objects, whether they
are remote references, stored objects in the file system, or URLs. The biggest
downside is that DCOM is a Microsoft-only solution. It also doesn’t work well
across firewalls (a problem with most RPC systems) since the firewalls must allow
traffic to flow between certain ports used by ORPC and DCOM.

CORBA
Even with DCE fixing some of the shortcomings in Sun’s RPC, certain deficien-
cies still remain. For example, if a server is not running, a client cannot connect
to it to call a remote procedure. It is an administrator’s responsibility to ensure
that the needed servers are started before any clients attempt to connect to
them. If a new service or interface is added to the system, there is no means by
which a client can discover this. In some environments, it might helpful for a
client to be able to find out about services and their interfaces at run-time. Fi-
nally, object oriented languages expect polymorphism in function calls (the
function may behave differently for different types of data). Traditional RPC has
no support for this.

CORBA (Common Object Request Broker Architecture) was created to ad-
dress these, and other, issues. It is an architecture created by an industry consor-
tium of over 500 companies called the Object Management Group (OMG). The
specification for this architecture has been evolving since 1989. The goal is to
provide support for distributed heterogeneous object-oriented applications. Ob-
jects may be hosted across a network of computers (a single object is not distrib-
uted). The specification is independent of any programming language, operat-
ing system, or network to enable interoperability across these platforms.

Remote Procedure Call

Rutgers University – CS 417: Distributed Systems
©2000-2002 Paul Krzyzanowski 13

Under CORBA, when a client wishes to invoke an operation (method) on an
object, it makes a request and gets a response. Both the request and response
pass through the object request broker (ORB). The ORB represents the entire set of
interface libraries, stub functions, and servers that hide the mechanisms for
communication, activation, and storage of server objects from the client. It lets
objects discover each other at run time and invoke services.

When a client makes a request, the ORB:
 marshals arguments (at the client).
 locates a server for the object. If necessary, it creates a process on the

server end to handle the request.
 if the server is remote, transmits the request (using RPC or sockets).
 unmarshals arguments into server format (at the server).
 marshals return value (at the

server)
 transmits the return if the

server is remote.
unmarshals results at client.

An Interface Definition Lan-
guage (IDL) is used to specify the
names of classes, their attributes,
and their methods. An IDL compiler
generates code to deal with the mar-
shaling, unmarshaling, and
ORB/network interactions. It gen-
erates client and server stubs. A
sample IDL is shown in Figure 3.

Programming is most commonly accomplished via object reference and re-
quests: clients issue a request on a CORBA object using the object reference and
invoking the desired methods within it. For example, using the IDL in Figure 3
one might have code such as:

Student st = ... // get object reference
try {
 StudentInfo sinfo = st.getinfo("Fred Grampp");
} catch (Throwable e) {
 ... // error
}

Beneath the scenes, this code results in a stub function being called, parame-
ters marshaled, and sent to the server. The client and server stubs can be used
only if the name of the class and method is known at compile time. Otherwise,
CORBA supports dynamic binding – assembling a method invocation at run time
via the Dynamic Invocation Interface (DII). This interface provides calls to set
the class, build the argument list, and make the call. The server counterpart (for

Figure 3. CORBA IDL example

Module StudentObject {
 Struct StudentInfo {
 String name;
 int id;
 float gpa;
 };
 exception Unknown {};
 interface Student {
 StudentInfo getinfo(in string name)
 raises(unknown);
 void putinfo(in StudentInfo data);
 };
};

Remote Procedure Call

Rutgers University – CS 417: Distributed Systems
©2000-2002 Paul Krzyzanowski 14

creating a server interface dynamically) is called the Dynamic Skeleton Interface
(DSI)5. A client can discover names of classes and methods at run time via the
interface repository. This is a name server that can be queried to discover what
classes a server supports and which objects are instantiated.

CORBA standardized the functional interfaces and capabilities but left the
actual implementation and data representation formats to individual ORB ven-
dors. This led to the situation where one CORBA implementation might not
necessarily be able to communicate with another. Applications generally needed
some reworking to move from one vendor’s CORBA product to another.

In 1996, CORBA 2.0 added interoperability as a goal in the specification. The
standard defined a network protocol called IIOP (the Internet Inter-ORB Protocol)
which would work across any TCP/IP based CORBA implementations. In fact,
since there was finally a standardized, documented protocol, IIOP itself could be
used in systems that do not even provide a CORBA API. For example, it could be
used as a transport for an implementation of Java RMI (RMI over IIOP; RMI will
be covered further on).

The hope in providing a well-documented network protocol such as IIOP
along with the full-featured set of capabilities of CORBA was to usher in a wide
spectrum of diverse Internet services. Organizations can host CORBA-aware ser-
vices. Clients throughout the Internet will be able to query these services, find
out their interfaces dynamically, and invoke functions. The pervasiveness of these
services could be as ubiquitous as HTML web access.

CORBA summary

Basically, CORBA builds on top of earlier RPC systems and offers the following
additional capabilities:

 Static or dynamic method invocations (RPC only supports static bind-
ing).

 Every ORB supports run time metadata for describing every server in-
terface known to the system.

 An ORB can broker calls within a single process, multiple processes on
the same machine, or distributed processes.

 Polymorphic messaging – an ORB invokes a function on a target object.
The same function may have different effects depending on the type of
the object.

 Automatically instantiate objects that are not running
 Communicate with other ORBs.

CORBA also provides a comprehensive set of services (known as COS, for
COrba Services) for managing objects:

5 Some systems use the term stub to refer to the client stub and skeleton to refer to the server stub. CORBA is one
of them. Microsoft uses the term proxy for the client stub and stubfor the server stub.

Remote Procedure Call

Rutgers University – CS 417: Distributed Systems
©2000-2002 Paul Krzyzanowski 15

 Life-Cycle Services: provides operations for creating, copying, moving,
and deleting components.

 Persistence Service (externalization): provides an interface for storing
components on storage servers.

 Naming Service: allows components to locate other components by
name.

 Event Service: components can register/unregister their interest in spe-
cific events.

 Concurrency Control Services: allows objects to obtain locks on behalf
of transactions.

 Transaction Service: provides two-phase commit coordination (more on
this later).

 Query Service: allows query operations on objects.

 Licensing Service: allows metering the use of components.

 Properties Service: allows names/properties to be associated with a
component.

The price for the capabilities and flexibility is complexity. While CORBA is
reliable and provides comprehensive support for managing distributed services,
deploying and using CORBA generally has rather steep learning curve. Integrat-
ing it with languages is not always straightforward. Unless one could really take
advantage of CORBA’s capabilities, it is often easier to use a simpler and less
powerful system to invoke remote procedures. CORBA enjoys a decent level of
success, but only in pools of users rather than an Internet-wide community.
CORBA suffered in being late to standardize on TCP/IP-based protocols and
deploying Internet-based services.

Java RMI
CORBA aims at providing a comprehensive set of services for managing objects
in a heterogeneous environment (different languages, operating systems, net-
works). Java, in its initial inception, supported the downloading of code from a
remote site but its only support for distributed communication was via sockets. In
1995, Sun (the creator of Java) began creating an extension to Java called Java
RMI (Remote Method Invocation). Java RMI enables a programmer to create
distributed applications where methods of remote objects can be invoked from
other Java virtual machines.

A remote call can be made once the application (client) has a reference to
the remote object. This is done by looking up the remote object in the naming

Remote Procedure Call

Rutgers University – CS 417: Distributed Systems
©2000-2002 Paul Krzyzanowski 16

service (the RMI registry) provided by RMI and receiving a reference as a return
value. Java RMI is conceptually similar to RPC butt supports the semantics of
object invocation in different address spaces.

One area in which the design of Java differs from CORBA and most RPC sys-
tems is that RMI is built for Java only. Sun RPC, DCE RPC, Microsoft’s DCOM
and ORPC, and CORBA are designed to be language, architecture, and (except
for Microsoft) operating system independent. While those capabilities are lost,
the gain is that RMI fits cleanly into the language and has no need for standard-
ized data representations (Java uses the same byte ordering everywhere). The
design goals for Java RMI are:

 it should fit the language, be integrated into the language, and be sim-
ple to use

 support seamless remote invocation of objects
 support callbacks from servers to applets
 preserve safety of the Java object environment
 support distributed garbage collection
 support multiple transports

The distributed object model is similar to the local Java object model in the
following ways:

1. A reference to an object can be passed as an argument or returned as
a result.

2. A remote object can be cast to any of the set of remote interfaces sup-
ported by the implementation using the Java syntax for casting.

3. The built-in Java instanceof operator can be used to test the remote
interfaces supported by a remote object.

The object model differs from the local Java object model in the following
ways:

1. Classes of remote objects interact with remote interfaces, never with
the implementation class of those interfaces.

2. Non-remote arguments to (and results from) a remote method
invocation are passed by copy, not by reference.

3. A remote object is passed by reference, not by copying the actual re-
mote implementation.

4. Clients must deal with additional exceptions.

Interfaces and classes
All remote interfaces extend the interface java.rmi.Remote. For example:

public interface bankaccount extends Remote
{
 public void deposit(float amount)
 throws java.rmi.RemoteException;

Remote Procedure Call

Rutgers University – CS 417: Distributed Systems
©2000-2002 Paul Krzyzanowski 17

client server

stubs stubs

remote reference layer

transport

 public void withdraw(float amount)
 throws OverdrawnException,
 java.rmi.RemoteException;
}

Note that each method must declare
java.rmi.RemoteException in its throws clause. This excep-
tion is thrown whenever the remote method invocation fails.

Remote Object Class
The java.rmi.server.RemoteObject class provides remote
semantics of Object by implementing the hashCode, equals, and toString6.
The functions needed to create objects and make them available remotely are
provided by java.rmi.server.RemoteServer and subclasses. The
java.rmi.server.UnicastRemoteObject class defines a unicast (single) re-
mote object whose references are valid only while the server process is alive.

Stubs
Java RMI works by creating stub functions. The stubs are generated with the

rmic compiler.

Locating objects
A bootstrap name server is provided for storing named references to remote

objects. A remote object reference can be stored using the URL-based methods
of the class java.rmi.Naming. For example,

BankAccount acct = new BankAcctImpl();
String url = "rmi://java.sun.com/account";
// bind url to remote object
java.rmi.Naming.bind(url, acct);

// look up account
acct = (BankAccount)java.rmi.Naming.lookup(url);

RMI architecture
RMI is a three-layer architecture (Figure 4). The top layer is the stub/skeleton layer.
It transmits data to the remote reference layer via marshal streams. Marshal
streams employ a method called object serialization, which enables objects to be
transmitted between address spaces (passing them by copy, unless they are re-
mote objects which are passed by reference).

The client stub performs the following steps:

6 the toString method returns the reference of the object as a string.

Figure 4. Java RMI architecture

Remote Procedure Call

Rutgers University – CS 417: Distributed Systems
©2000-2002 Paul Krzyzanowski 18

1. initiates a call to remote object
2. marshals arguments
3. informs remote reference layer that the call should be invoked
4. unmarshals return value or exception
5. informs remote reference layer that the call is complete.

The server stub (skeleton):
1. unmarshals arguments
2. makes up-call to the actual remote object implementation
3. marshals the return value of the call (or exception)

The stub/skeleton classes are determined at run time and dynamically
loaded as needed. They must be precompiled with the rmic compiler.

The remote reference layer deals with the lower-level transport interface. It is re-
sponsible for carrying out a specific remote reference protocol that is independ-
ent of the client stubs and server skeletons.

Each remote object implementation chooses its own remote reference sub-
class. Various protocols are possible. For example:

 unicast point-to-point
 invocation to replicated object groups
 support for a specific replication strategy
 support for a persistent reference to a remote object (enabling activa-

tion of the remote object)
 reconnection strategies

Multicast delivery is not part of JDK 1.1 RMI.
The transport layer is the transport-specific part of the protocol stack. It:

 sets up connections, manages connections
 monitors connection liveness
 listens for incoming calls
 maintains a table of remote objects that reside in the address space
 sets up a connection for an incoming call
 locates the dispatched for the target of a remote call and passes the

connection to the dispatcher.

Remote Procedure Call

Rutgers University – CS 417: Distributed Systems
©2000-2002 Paul Krzyzanowski 19

Third generation RPCs: Web services and the XML
bandwagon

XML RPC

SOAP

Microsoft .NET

Remote Procedure Call

Rutgers University – CS 417: Distributed Systems
©2000-2002 Paul Krzyzanowski 20

Appendix A: Sun’s RPC definition language

Program identification
Every program (a collection of RPC procedures) is identified by some value. This
value is a 32-bit integer that you have to select. The restrictions imposed on this
number are:

0x00000000—0x1fffffff defined by Sun for standard services

0x20000000—0x3fffffff defined by the user

0x40000000—0x5fffffff transient processes

0x60000000—0xffffffff reserved for future use

A program identification is:
 program identifier {
 version_list
 } = value;

The identifier names the program. The version list is a list of definitions,
each of the form:

 version identifier {
 procedure_list
 } = value;

The value is an unsigned integer. Usually you only have one version in a
program definition. The identifier is a string that names the version of the
program. The rpcgen compiler will generate a #define for it and the program
identifier in the header file so that these values can be passed as arguments to
clnt_create.

Every version definition contains a list of procedure. This procedure list con-
tains a sequence of definitions, each of the form:

 data_type procedure_name (data_type) = value;

The procedure_name is a string naming the procedure. The value is an un-
signed integer that specifies the procedure number (0 is reserved for the “null”
procedure). The data_type can be any simple C data type (such as int,
unsigned int, void, or char) or a complex data type.

Data types
Constants may be used in place of an integer value. Constant definitions are con-
verted to a #define statement by rpcgen:

 const MAXSIZE = 512;

Remote Procedure Call

Rutgers University – CS 417: Distributed Systems
©2000-2002 Paul Krzyzanowski 21

Structures are like C structures. rpcgen transfers the structure definition and
adds a typedef for the name of that structure. For example,

 struct intpair { int a, b };

is translated into:

 struct intpair { int a, b };
 typedef struct intpair intpair;

Enumeration types are also similar to C:

 enum state { BUSY=1, IDLE=2, TRANSIT=3 };

Unions are not like C. A union is a specification of data types based on some
criteria:

 union identifier switch (declaration) {
 case_list
 }

For example:

 const MAXBUF=30;
 union time_results switch (int status) {
 case 0: char timeval[MAXBUF];
 case 1: void;
 case 2: int reason;
 }

If you set status to 0, you must assign data to time_results_u.timeval .

Type definitions are like C, for example,

 typedef long counter;

Arrays are similar to C but may be of a fixed or variable length. A declaration
of

 int proc_hits[100];

defines a fixed-size array of 100 integers. A declaration such as:

 long x_vals<50>;

defines a variable size array with a maximum size of 50 longs. The number may
be omitted if there is no bound on the size. This declaration is translated to:

typedef struct {
 u_int x_vals_len;
 long *x_vals_val;
} x_coords;

Pointers are like C. However, a pointer is not sent over the network (the
value would be meaningless on the other machine). What is sent is a boolean
value (true for pointer, false for null) followed by the data to which the pointer
points.

Remote Procedure Call

Rutgers University – CS 417: Distributed Systems
©2000-2002 Paul Krzyzanowski 22

Strings are declared as if they were variable length arrays:

 string name<50>;

defines a string of at most 50 characters. When implementing strings, you have to
allocate space to store the string (for example, point to a static buffer when
returning a string value). The value in angle brackets may be empty to state that
there is no maximum length for the string. A string declaration is translated into
a pointer to a character by rpcgen:

 char **name;

Boolean data is defined as:

 bool busy;

The variable busy may be set to TRUE or FALSE.
Opaque data is untyped data that contains an arbitrary sequence of bytes. It

may be of a fixed or variable length:

 opaque extra_bytes[512];
 opaque more<512>;

 The second definition is translated by rpcgen into:

 struct {
 uint more_len; /* length of the array */
 char *more_val; /* space used by the array */
 }

Writing procedures using Sun’s RPC
 Create a procedure whose name is the name of the RPC definition but in

lowercase with an underscore and version number after it.
 The argument to the procedure is a pointer to the argument data type

specified in the RPC definition language.
 The procedure must return a pointer to the data type specified in the RPC

definition language.
 Lower-level RPC routines use the procedure’s return value after the pro-

cedure ends, so the return address must be that of a static variable.
 If a procedure allocates memory (e.g., to hold a string or linked list), the

memory must not be freed until all processing of the data is complete.
Data is translated to XDR after the procedure ends so you should only free
the space on the next invocation of the procedure (you may need to set a
static variable to keep track of this state).

External Data Representation
RPC routines call the XDR routines to translate data into and out of XDR for-
mat. The user normally need not worry about XDR—it’s completely transparent.

Remote Procedure Call

Rutgers University – CS 417: Distributed Systems
©2000-2002 Paul Krzyzanowski 23

However, you must use the xdr_free routine to free data that the procedure allo-
cates. xdr_free takes a pointer to an XDR function and a data pointer. It frees
memory that is associated with the data pointer. The function passed as a pa-
rameter is the XDR routine corresponding to the data type. The RPC compiler
names these functions by prefacing the name of the type with xdr_. For exam-
ple, if you define a structure named id, the corresponding XDR function is
xdr_id(). If you have a linked list structure:

 struct list {int val; struct list *next; };

and head is a pointer to the start of the list (you allocated memory for it). After
the XDR routines translate the data, you can use xdr_free(xdr_list,
head)to free the data.

Sun RPC example
Here’s a sample program from Richard Stevens’ text. There are four compo-
nents: Makefile (so that we can run the make command and compile every-
thing), date.x (the RPC definition), server.c (the server function), and
client.c (the client program). The program is a simple one: the client pro-
gram (client) accepts a machine name as an argument. It is assumed that before
client is run the server program (server) is running on that machine. The client
first requests the time from the server, which is returned as a 32-bit value. It then
sends that result back to the server to get an ASCII string containing the
date/time represented by that value.

Makefile

all: client server

client: client.o date_clnt.o date.h
 cc -o client client.o date_clnt.o -lnsl

server: server.o date_svc.o date.h
 cc -o server server.o date_svc.o -lnsl

date_svc.o:
 $(CC) $(CFLAGS) -c date_svc.c

date_clnt.o:
 $(CC) $(CFLAGS) -c date_clnt.c

client.o: date.h

server.o: date.h

date.h: date.x
 rpcgen date.x

clean:

Remote Procedure Call

Rutgers University – CS 417: Distributed Systems
©2000-2002 Paul Krzyzanowski 24

 rm -f client client.o server server.o date_clnt.*
date_svc.* date.h

tar:
 tar cvf rpcdemo.tar date.x client.c server.c Makefile

date.x

/* date.x - description of remote date service */

/* we define two procedures: */
/* bin_date_1 returns the time in binary format */
/* (seconds since Jan 1, 1970 00:00:00 GMT) */
/* str_date_1 converts a binary time to a readable date string
*/

program DATE_PROG {
 version DATE_VERS {
 long BIN_DATE(void) = 1; /* procedure number = 1
*/
 string STR_DATE(long) = 2; /* procedure number = 2
*/
 } = 1;
} = 0x31415926;

Remote Procedure Call

Rutgers University – CS 417: Distributed Systems
©2000-2002 Paul Krzyzanowski 25

server.c

#include <rpc/rpc.h>
#include "date.h"

/* bin_date_1 returns the system time in binary format */
long *
bin_date_1()
{
 static long timeval; /* must be static!! This value is
*/
 /* used by rpc after bin_date_1 returns
*/
 long time(); /* Unix time function; returns time
*/

 timeval = time((long *)0);
 return &timeval;
}

/* str_date_1 converts a binary time into a date string */
char **
str_date_1(bintime)
long *bintime;
{
 static char *ptr; /* return value... MUST be static! */
 char *ctime(); /* Unix library function that does the
work */
 ptr = ctime(bintime);
 return &ptr;
}

client.c

/* client code */

#include <stdio.h>
#include <rpc/rpc.h>
#include <netconfig.h>
#include "date.h"

main(argc, argv)
int argc;
char **argv;
{
 CLIENT *cl; /* rpc handle */
 char *server;
 long *lresult; /* return from bin_date_1 */
 char **sresult; /* return from str_date_1 */

 if (argc != 2) {
 fprintf(stderr, "usage: %s hostname\n", argv[0]);
 exit(1);

Remote Procedure Call

Rutgers University – CS 417: Distributed Systems
©2000-2002 Paul Krzyzanowski 26

 }
 server = argv[1]; /* get the name of the server */
 /* create the client handle */
 if ((cl=clnt_create(server, DATE_PROG,
 DATE_VERS, "netpath")) == NULL) {
 /* failed! */
 clnt_pcreateerror(server);
 exit(1);
 }
 /* call the procedure bin_date */
 if ((lresult=bin_date_1(NULL, cl))==NULL) {
 /* failed ! */
 clnt_perror(cl, server);
 exit(1);
 }
 printf("time on %s is %ld\n", server, *lresult);
 /* have the server convert the result to a date string */
 if ((sresult=str_date_1(lresult, cl)) == NULL) {
 /* failed ! */
 clnt_perror(cl, server);
 exit(1);
 }
 printf("date is %s\n", *sresult);
 clnt_destroy(cl); /* get rid of the handle */
 exit(0);
}

Remote Procedure Call

Rutgers University – CS 417: Distributed Systems
©2000-2002 Paul Krzyzanowski 27

References

The Component Object Model Specification, Draft version 0.9, October 24, 1995,
© 1992-1995 Microsoft Corp,
http://www.microsoft.com/oledev/olecom/title.htm [probably more than
you’ll want to know about Microsoft’s COM]

CORBA Architecture, version 2.1, Object Management Group, August 1997,
pp 1-1 – 2-18 .[introductory CORBA concepts straight from the horse’s
mouth]

The OSF Distributed Computing Environment: Building on International Stan-
dards – A White Paper, Open Software Foundation, April 1992. [introduc-
tion to DCE and DCE’s RFS]

Networking Applications on UNIX System V Release 4, Michael Padovano,
©1993 Prentice Hall. [guide to sockets, Sun RPC, and Unix network pro-
gramming]

UNIX Network Programming, W. Richard Stevens, ©1990 Prentice Hall.
[guide to sockets, Sun RPC, and Unix network programming]

JAVA™ Remote Method Invocation (RMI), ©1995-1997 Sun Microsystems,
http://java.sun.com/products/jdk/rmi/index.html [probably all you’ll
want to know about Java RMI]

Distributed Operating Systems, Andrew Tanenbaum, © 1995 Prentice Hall, pp.
68-98, 520-524,535-540. [introductory information on sockets and RPC]

Modern Operating Systems, Andrew Tanenbaum, ©1992 Prentice Hall, pp.
145- 180, 307-313, 340-346. [introductory information on sockets and RPC]

Document created: February 10, 2003

