
Page 1Page 1

RPC Case Studies

Paul Krzyzanowski

pxk@cs.rutgers.edu

Distributed Systems

Except as otherwise noted, the content of this presentation is licensed under the Creative Commons
Attribution 2.5 License.

Page 2Page 2

Overview of RPC Systems

Sun RPC

DCE RPC

DCOM

CORBA

Java RMI

XML RPC, SOAP/.NET, AJAX, REST

Page 3Page 3

Sun RPC

Page 4

Sun RPC

RPC for Unix System V, Linux, BSD, OS X
– Also known as ONC RPC

(Open Network Computing)

Interfaces defined in an Interface Definition
Language (IDL)

– IDL compiler is rpcgen

Page 6

RPC IDL

program GETNAME {

version GET_VERS {

long GET_ID(string<50>) = 1;

string GET_ADDR(long) = 2;

} = 1; /* version */

} = 0x31223456;

name.x

Page 7

rpcgen

rpcgen name.x

produces:
– name.h header
– name_svc.c server stub (skeleton)
– name_clnt.c client stub
– [name_xdr.c] XDR conversion routines

• Function names derived from IDL function
names and version numbers

• Client gets pointer to result
– Allows it to identify failed RPC (null return)

Page 8

What goes on in the system: server

Start server
– Server stub creates a socket and binds any

available local port to it

– Calls a function in the RPC library:

• svc_register to register {program#, port #}

• contacts portmapper (rpcbind on SVR4):

– Name server

– Keeps track of
{program#,version#,protocol} port# bindings

– Server then listens and waits to accept
connections

Page 9

What goes on in the system: client

• Client calls clnt_create with:
– Name of server
– Program #
– Version #
– Protocol#

• clnt_create contacts port mapper on that
server to get the port for that interface
– early binding – done once, not per procedure call

Page 10

Advantages

• Don’t worry about getting a unique transport address (port)

– But with SUN RPC you need a unique program number per
server

– Greater portability

• Transport independent

– Protocol can be selected at run-time

• Application does not have to deal with maintaining message
boundaries, fragmentation, reassembly

• Applications need to know only one transport address

– Port mapper

• Function call model can be used instead of send/receive

Page 11Page 11

DCE RPC

Page 12

DCE RPC

• DCE: set of components designed by The
Open Group (merger of OSF and X/Open) for
providing support for distributed applications

– Distributed file system service, time service,
directory service, …

• Room for improvement in Sun RPC

Page 13

DCE RPC

• Similar to Sun’s RPC

• Interfaces written in a language called
Interface Definition Notation (IDN)
– Definitions look like function prototypes

• Run-time libraries
– One for TCP/IP and one for UDP/IP

• Authenticated RPC support with DCE security
services

• Integration with DCE directory services to
locate servers

Page 14

Unique IDs

Sun RPC required a programmer to pick a
“unique” 32-bit number

DCE: get unique ID with uuidgen
– Generates prototype IDN file with a 128-bit

Unique Universal ID (UUID)

– 10-byte timestamp multiplexed with version
number

– 6-byte node identifier (ethernet address on
ethernet systems)

Page 15

IDN compiler

Similar to rpcgen:

Generates header, client, and server stubs

Page 16

Service lookup

Sun RPC requires client to know name of server

DCE allows several machines to be organized
into an administrative entity

cell (collection of machines, files, users)

Cell directory server
Each machine communicates with it for cell services
information

Page 17

DCE service lookup

client
cell

dir server

Request service
lookup from cell
directory server

Return server
machine name

service?

server

Page 18

DCE service lookup

client
cell

dir server

Connect to
endpoint mapper
service and get
port binding from
this local name
server

local
dir server

SERVER

service?

port

dced

Page 19

DCE service lookup

client
cell

dir server

Connect to service
and request
remote procedure
execution

local
dir server

SERVER

RPC
server

dced

Page 20

Marshaling

Standard formats for data
– NDR: Network Data Representation

Goal
– Sender can (hopefully) use native format

– Receiver may have to convert

Page 21

Sun and DCE RPC deficiencies

• If server is not running

– Service cannot be accessed

– Administrator responsible for starting it

• If a new service is added

– There is no mechanism for a client to discover this

• Object oriented languages expect polymorphism

– Service may behave differently based on data
types passed to it

Page 22Page 22

The next generation of RPCs

Support for object oriented languages

Page 23Page 23

Microsoft DCOM

Page 24

Microsoft DCOM

OLE/COM

DCOM: Windows NT 4.0, fall 1996

Extends Component Object Model (COM) to
allow objects to communicate between machines

Page 25

Activation on server

Service Control Manager
(SCM, part of COM library)
– Connects to server SCM

– Requests creation of object on server

Surrogate process runs components
– Loads components and runs them

Can handle multiple clients simultaneously

Page 26

Beneath DCOM

Data transfer and function invocation

• Object RPC (ORPC)

• Extension of the DCE RPC protocol

Standard DCE RPC packets plus:

– Interface pointer identifier (IPID)
• Identifies interface and object where the call will be

processed

• Referrals: can pass remote object references

– Versioning & extensibility information

Page 27

MIDL

MIDL files are compiled with an IDL compiler

DCE IDL + object definitions

Generates C++ code for marshaling and
unmarshaling

– Client side is called the proxy

– Server side is called the stub

both are COM objects that are loaded
by the COM libraries as needed

Page 28

Remote reference lifetime

Object lifetime controlled by remote reference
counting

– RemAddRef, RemRelease calls

– Object elided when reference count = 0

Page 29

Cleanup

Abnormal client termination
– No message to decrement reference count set to

server

Pinging
– Server has pingPeriod, numPingsToTimeOut
– Relies on client to ping

• background process sends ping set – IDs of all remote
objects on server

– If ping period expires with no pings received,
all references are cleared

Page 30

Microsoft DCOM improvements

• Fits into Microsoft COM

• Generic server hosts dynamically loaded objects
– Requires unloading objects (dealing with dead clients)

– Reference counting and pinging

• Support for references to instantiated objects

• But… DCOM is a Microsoft-only solution
– Doesn’t work well across firewalls

Page 31Page 31

CORBA

Page 32

CORBA

Common Object Request Architecture
– Evolving since 1989

Standard architecture for distributing objects

Defined by OMG (Object Management Group)

– Consortium of >700 companies

Goal: provide support for distributed, heterogeneous
object-oriented applications

– Specification is independent of any language, OS,
network

Page 33

CORBA

Basic paradigm:
– Request services of a distributed object

• Interfaces are defined in an IDL

• Distributed objects are identified by object
reference

Object Request Broker (ORB)
– delivers request to the object and returns results

to the client

– = set of code that implements RPC

Page 34

CORBA logical view

object
implementationclient

ORB

Generated
stub code

Generated
skeleton code

Page 35

Assessment

• Reliable, comprehensive support for managing
services

• Standardized

• Complex
– Steep learning curve

– Integration with languages not always
straightforward

• Pools of adoption

• Late to ride the Internet bandwagon (IIOP)

Page 36Page 36

Java RMI

Page 37

Java RMI

• Java language had no mechanism for invoking
remote methods

• 1995: Sun added extension
– Remote Method Invocation (RMI)

– Allow programmer to create distributed
applications where methods of remote objects can
be invoked from other JVMs

Page 38

RMI components

Client
– Invokes method on remote object

Server
– Process that owns the remote object

Object registry
– Name server that relates objects with names

Page 39

Interoperability

RMI is built for Java only!
– No goal of OS interoperability (as CORBA)

– No language interoperability
(goals of SUN, DCE, and CORBA)

– No architecture interoperability

No need for external data representation
– All sides run a JVM

Benefit: simple and clean design

Page 40

New classes

• remote class:
– One whose instances can be used remotely
– Within its address space: regular object
– Other address spaces: can be referenced with an

object handle

• serializable class:
– Object that can be marshaled
– If object is passed as parameter or return value of

a remote method invocation, the value will be
copied from one address space to another

• If remote object is passed, only the object handle is
copied between address spaces

Page 41

New classes

• remote class:
– One whose instances can be used remotely
– Within its address space: regular object
– Other address spaces: can be referenced with an

object handle

• serializable class:
– Object that can be marshaled
– If object is passed as parameter or return value of

a remote method invocation, the value will be
copied from one address space to another

• If remote object is passed, only the object handle is
copied between address spaces

needed for remote objects

needed for parameters

Page 42

Stubs

Generated by separate compiler

rmic
– Produces Stubs and skeletons for the remote

interfaces are generated (class files)

Page 43

Naming service

Need a remote object reference to perform
remote object invocations

Object registry does this: rmiregistry

Page 44

Server

Register object(s) with Object Registry

Stuff obj = new Stuff();

Naming.bind(“MyStuff”, obj);

Page 45

Client

Contact rmiregistry to look up name

rmiregistry returns a remote object reference.

lookup gives reference to local stub.

Invoke remote method(s):

test.func(1, 2, “hi”);

MyInterface test = (MyInterface)

Naming.lookup(“rmi://www.pk.org/MyStuff”);

Page 46

Java RMI infrastructure

client
application

registry

stub skeleton

remote interface

remote object
implementation

bindlookup

remote
reference

f(args) f(args) return/exc.return/exception

marshal stream

Page 47

RMI Distributed Garbage Collection

• Two operations: dirty and free

• Local JVM sends a dirty call to the server JVM when
the object is in use

– The dirty call is refreshed based on the lease time
given by the server

• Local JVM sends a clean call when there are no more
local references to the object

• Unlike DCOM:
no incrementing/decrementing of references

Page 48Page 48

The third generation of
RPCs

Web services

and

Riding the XML Bandwagon

Page 49

We began to want
Remotely hosted services

Problem
Firewalls:

Restrict ports

Inspect protocol

Solution
Proxy procedure calls over HTTP

Page 50Page 50

XML RPC

Page 51

Origins

• Early 1998

• Data marshaled into XML messages
– All request and responses are human-readable XML

• Explicit typing

• Transport over HTTP protocol
– Solves firewall issues

• No true IDL compiler support (yet)
– Lots of support libraries

Page 52

XML-RPC example

<methodCall>

<methodName>

sample.sumAndDifference

</methodName>

<params>

<param><value><int> 5 </int></value></param>

<param><value><int> 3 </int></value></param>

</params>

</methodCall>

Page 53

XML-RPC data types

• int

• string

• boolean

• double

• dateTime.iso8601

• base64

• array

• struct

Page 54

Assessment

• Simple (spec about 7 pages)

• Humble goals

• Good language support
– Less with function call transparency

• Little/no industry support
– Mostly grassroots

Page 55Page 55

SOAP

Page 56

SOAP origins

(Simple) Object Access Protocol

• 1998 and evolving (v1.2 Jan 2003)

• Microsoft & IBM support

• Specifies XML format for messaging

– Not necessarily RPC

• Continues where XML-RPC left off:

– XML-RPC is a 1998 simplified subset of SOAP

– user defined data types

– ability to specify the recipient

– message specific processing control

– and more …

• XML (usually) over HTTP

Page 57

Web Services and WSDL

Web Services Description Language
– Analogous to an IDL

Describe an organization’s web services
– Businesses will exchange WSDL documents

Page 58

WSDL Structure

<definitions>

<types>

data type used by web service: defined via XML Schema syntax

</types>

<message>

describes data elements of operations: parameters

</message>

<portType>

describes service: operations, and messages involved

</portType>

<binding>

defines message format & protocol details for each port

</binding>

</definitions>

Page 59

WSDL structure: port types

<definitions name="MobilePhoneService“ target=…>

<portType name="MobilePhoneService_port">

<operation name="getListOfModels">

<operation name="getPrice">

<Input message="PhoneModel"/>

<output message="PhoneModelPrice"/>

1. type definitions

<output message="ListOfPhoneModels"/>

3. messaging spec

2
.
se

rv
ic
e

d
ef

in
it
io
n

Page 60Page 60

Microsoft
.NET Remoting

Page 61

Problems with COM/DCOM

• Originally designed for object linking and
embedding

• Relatively low-level implementation

• Objects had to provide reference counting
explicitly

• Languages & libraries provided varying levels
of support
– A lot for VB, less for C++

Page 66

.Net Remoting

Client

Server
functions

Proxy
interface

.Net
Runtime
• marshalling

.Net
Runtime

• Listener
• marshalling

channel

• TCP/binary
• HTTP/SOAP
• Named pipes

Page 67

Object Lifetime

Single Call: new instance per call (stateless)

Singleton: same instance for all requests

Client Activated Objects:

Similar to DCOM (COM+)

Each time a method is called:
– Lease time set to max of current LeaseTime and

RenewOnCallTime

– Requestor has to renew lease when LeaseTime
elapses

– No more reference counting!

Page 68Page 68

Away from RPC…

More Web Services

Page 69

Until 2006…

Google Web APIs Developer Kit - SOAP
www.google.com/apis/download.html

– A WSDL file you can use with any development
platform that supports web services.

– A Java library that provides a wrapper around
the Google Web APIs SOAP interface.

– An example .NET program which invokes the
Google Web APIs service.

– Documentation that describes the SOAP API and
the Java library.

Page 70

The future of SOAP?

• SOAP
– Dropped by Google in 2006

– Alternatives exist: AJAX, XML-RPC, REST, …

– Allegedly complex because “we want our tools to
read it, not people”

– unnamed Microsoft employee

• Microsoft
– SOAP APIs for Microsoft Live

– http://search.live.com/developer

Page 71

AJAX

• Asynchronous JavaScript And XML

• Asynchronous
– Client not blocked while waiting for result

• JavaScript
– Request can be invoked from JavaScript

(using HTTPRequest)

– JavaScript may also modify the Document Object
Model (CSS) – control how the page looks

• XML
– Data sent & received as XML

Page 72

AJAX & XMLHTTP

• Allow Javascript to make HTTP requests and
process results (change page without refresh)
– IE: new ActiveXObject(“msxml3.XMLHTTP”)
– Mozilla/Opera/Safari:

new XMLHttpRequest()

xmlhttp.open(“HEAD”, “index.html”, true)

• Tell object:
– Type of request you’re making
– URL to request
– Function to call when request is made
– Info to send along in body of request

Page 73

AJAX on the Web

• Google Maps, Google Mail, Amazon Zuggest,
Del.icio.us Director, Writely, …

• Microsoft ASP.NET AJAX 1.0
– January 2007

– Integrate client script libraries with ASP.NET
server-based code

• Google recommends use of their AJAX
Search API instead of SOAP Search API

Page 74

REST

REpresentational State Transfer

• Stay with the principles of the web
– Four HTTP commands let you operate on data (a

resource):
• PUT (insert)

• GET (select)

• POST (update)

• DELETE (delete)

• In contrast to invoking operations on an activity.

• Message includes representation of data.

Page 75

Resource-oriented services

• Blog example
– Get a snapshot of a user’s blogroll:

• HTTP GET //rpc.bloglines.com/listsubs

• HTTP authentication handles user identification

– TO get info about a specific subscription:
• HTTP GET http://rpc.bloglines.com/getitems?s={subid}

• Makes sense for resource-oriented services
– Bloglines, Amazon, flikr, del.icio.us, …

Page 76

Resource-oriented services

• Get parts info
HTTP GET //www.parts-depot.com/parts

• Returns a document containing a list of parts
(implementation transparent to clients)

<?xml version="1.0"?>
<p:Parts xmlns:p="http://www.parts-depot.com"

xmlns:xlink="http://www.w3.org/1999/xlink">
<Part id="00345" xlink:href="http://www.parts-depot.com/parts/00345"/>
<Part id="00346" xlink:href="http://www.parts-depot.com/parts/00346"/>
<Part id="00347" xlink:href="http://www.parts-depot.com/parts/00347"/>
<Part id="00348" xlink:href="http://www.parts-depot.com/parts/00348"/>

</p:Parts>

Page 77

Resource-oriented services

• Get detailed parts info:
HTTP GET //www.parts-depot.com/parts/00345

• Returns a document containing a list of parts
(implementation transparent to clients)

?xml version="1.0"?>
<p:Part xmlns:p="http://www.parts-depot.com"

xmlns:xlink="http://www.w3.org/1999/xlink">
<Part-ID>00345</Part-ID>
<Name>Widget-A</Name>
<Description>This part is used within the frap assembly</Description>
<Specification xlink:href="http://www.parts-depot.com/parts/00345/specification"/>
<UnitCost currency="USD">0.10</UnitCost>
<Quantity>10</Quantity>

</p:Part>

Page 78

REST vs. RPC

Example from wikipedia:
RPC

getUser(), addUser(), removeUser(), updateUser(),
getLocation(), AddLocation(), removeLocation()

exampleObject = new ExampleApp(“example.com:1234”);

exampleObject.getUser();

REST
http://example.com/users
http://example.com/users/{user}
http://example.com/locations
userResource =

new Resource(“http://example.com/users/001”);

userResource.get();

Page 79

REST-based Systems

• Yahoo! Search APIs

• Ruby on Rails 1.2

• Twitter

• Open Zing Services – Sirius radio

svc://Radio/ChannelList

svc://Radio/ChannelInfo?sid=001-siriushits1&ts=2007091103205

Page 80Page 80

Summary

Page 81

ONC RPC, DCE

RPC/DCE
– Language/OS independent (mostly UNIX, some

Windows)

– No polymorphism

– No dynamic invocation

DCE RPC added:
– UUID

– layer of abstraction: a cell of machines

Page 82

Microsoft DCOM/ORPC

• ORPC: slight extension of DCE RPC

• Single server with dynamic loading of objects
(surrogate process)

• Platform dependent – generally a Microsoft-
only solution

• Support for distributed garbage collection
• Clients pings server to keep references valid

Page 83

Java RMI

• Language dependent (Java only)

• Architecture dependent (JVM)

• Generalized (and programmable) support for
object serialization

• No dynamic invocation

• No support for dynamic object/interface
discovery

Page 84

CORBA

• Cross-platform: language/OS independent
– Widespread support

• Support for object-oriented languages

• Dynamic discovery and invocation

• Object life-cycle management
– Persistence

– Transactions

– Metering

– Load balancing

– Starting services

Page 85

XML-RPC/SOAP/.NET

• XML over HTTP transport
– Relatively easy to support even if language does

not have a compiler (or precompiler)
– WSDL – service description
– Proxy over HTTP/port 80

• Bypass firewalls

– SOAP has gotten bloated; large messages

• .NET Remoting & Web Services introduces
– Language support for deploying web services

(you don’t have to deal with SOAP)
– Library support, including predefined services

Page 86

AJAX, REST

• AJAX
– Designed for web client-server interaction

– Simple JavaScript calling structure using
XMLHTTPRequest class

– You can encapsulate SOAP requests or whatever…

• REST
– Sticks to basic principles of HTTP.

– Posits that you don’t need additional communication
streams or the method-like abstractons of SOAP
or RMI

Page 87Page 87

The end

