Distributed Systems

Distributed File Systems

Paul Krzyzanowski
pxk@cs.rutgers.edu

Except as otherwise noted, the content of this presentation is licensed under the Creative Commons
Attribution 2.5 License.

File service types

Upload/Download model
- Read file: copy file from server to client
- Write file: copy file from client to server

Advantage
- Simple

Problems
- Wasteful: what if client needs small piece?
- Problematic: what if client doesn't have enough space?
- Consistency: what if others need to modify the same file?

File server

File Directory Service

- Maps textual names for file to internal locations
that can be used by file service

File service
- Provides file access interface to clients

Client module (driver)
- Client side interface for file and directory service

- if done right, helps provide access transparency
e.g. under vnode layer

Accessing files

FTP, telnet:
- Explicit access

- User-directed connection to access remote
resources

We want more transparency

- Allow user to access remote resources just as local

ones

Focus on file system for now
NAS: Network Attached Storage

File service types

Remote access model

File service provides functional interface:
- create, delete, read bytes, write bytes, etc...

Advantages:

- Client gets only what's needed
- Server can manage coherent view of file system

Problem:
- Possible server and network congestion
+ Servers are accessed for duration of file access
+ Same data may be requested repeatedly

Semantics of
file sharing




Sequential semantics

Read returns result of last write
Easily achieved if
- Only one server
- Clients do not cache data
BUT
- Performance problems if no cache
+ Obsolete data

- We can write-through
+ Must notify clients holding copies
* Requires extra state, generates extra traffic

Other solutions

Make files immutable
- Aids in replication
- Does not help with detecting modification

(0]
Use atomic transactions
- Each file access is an atomic transaction

- If multiple transactions start concurrently
* Resulting modification is serial

File usage

Most files are <10 Kbytes
- 2005: average size of 385,341 files on my Mac =197 KB
- 2007: average size of 440,519 files on my Mac =451 KB
- (files accessed within 30 days: 15, 792 files
80% of files are <47KB)

- Feasible to transfer entire files (simpler)
- Still have to support long files

Most files have short lifetimes
- Perhaps keep them local

Few files are shared
- Overstated problem

- Session semantics will cause no problem most of
the time

Session semantics

Relax the rules

+ Changes to an open file are initially visible
only to the process (or machine) that
modified it.

* Last process to modify the file wins.

File usage patterns

+ We can't have the best of all worlds
*+ Where to compromise?
- Semantics vs. efficiency

- Efficiency = client performance, network traffic,
server load

* Understand how files are used
+ 1981 study by Satyanarayanan

System design issues




How do you access them?

Access remote files as local files

Remote FS name space should be
syntactically consistent with local name
space
1. redefine the way all files are hamed and provide a
syntax for specifying remote files
e.g. //server/dir/file
Can cause legacy applications to fail
2. use a file system mounting mechanism
Overlay portions of another FS name space over local
name space

This makes the remote name space look like it's part of
the local hame space

Stateful or stateless design?

Stateless
- Server maintains no information on client accesses
- Each request must identify file and offsets
+ Server can crash and recover
- No state to lose
+ Client can crash and recover
* No open/close needed
- They only establish state
+ No server space used for state
- Don't worry about supporting many clients
* Problems if file is deleted on server
+ File locking not possible

Approaches to caching

+ Write-through
- What if another client reads its own (out-of-date) cached
copy?
- All accesses will require checking with server
- Or ... server maintains state and sends invalidations

+ Delayed writes (write-behind)

- Data can be buffered locally (watch out for consistency -
others won't see updates!)
Remote files updated periodically
- One bulk wire is more efficient than lots of little writes
- Problem: semantics become ambiguous

Stateful or stateless design?

Stateful
- Server maintains client-specific state
* Shorter requests
* Better performance in processing requests
* Cache coherence is possible
- Server can know who's accessing what
* File locking is possible

Caching

Hide latency to improve performance for
repeated accesses

Four places
- Server's disk
- Server's buffer cache WARNING:

- Cll:en‘r:s bgffer cache cache consistency
-| Client's disk problems

Approaches to caching

+ Read-ahead (prefetch)

- Request chunks of data before it is needed.
- Minimize wait when it actually is needed.

+ Write on close
- Admit that we have session semantics.

+ Centralized control
- Keep track of who has what open and cached on
each node.
- Stateful file system with signaling traffic.




