
1

CS 417

Sockets and the operating
system

2

CS 417

Machine vs. transport endpoints
• IP packets address only the machine

– IP header identifies source IP address, destination IP
address

– IP address is a 32-bit address that refers to a
machine

• IP packet delivery is not guaranteed to be reliable or in-
order

• Transport-level protocols on top of IP:
– Allow application-to-application communication
– TCP/IP
– UDP/IP
– Port numbersProcess A Process B

port 1512 port 25

machine 192.168.1.5 machine 192.168.1.7

(This part is a review from the lecture)
The IP protocol allows packets to be sent from one machine to another machine.
Each IP packet header identifies the source and destination machines by their 32-bit
IP address.
The assumption at the IP layer is that the delivery of packets is unreliable (packets
may get lost or data may get corrupted) and may not be in-order (packets may arrive
in a different order than they were sent.
Two transport-level protocols allow us to deal with application-to-application
communication. These are TCP/IP and UDP/IP.
Both TCP and UDP use port numbers to identify transport endpoints
(applications). A port number is a 16-bit number that is associated with an
application.
For example, if Process A (which grabbed use of port number 1512) communicates
with Process B (which grabbed the use of port 25), an IP packet from process A to
process B will be addressed with a source address of 192.168.1.5 and a destination
address of 192.168.1.7. The TCP or UDP header, which is encapsulated within the
IP data will contain a source port of 1512 and a destination port of 25.

3

CS 417

TCP/IP
• Virtual circuit service
• Sends ACK for each received packet
• Checksum to validate data
• Data may be transmitted simultaneously in both

directions
• No record markers but data arrives in sequence

Src port Dest port

Sequence number

Acknowledgement number

Options and pad

window

checksum Urgent ptr

flagsHeader
length

TCP header

20 bytes

TCP/IP – Transport Control Protocol
Provides virtual circuit service – connection oriented – you set up a connection and
just read and write data on that connection. No need to address each packet.
Packets are acknowledged by the protocol – no chance of packet loss
A checksum is present to validate data – no data corruption. If there is, an
acknowledgement is not sent and the packet is retransmitted
TCP does not maintain record boundaries. For example, if you perform three writes:
5 bytes, 20 bytes, 15 bytes, the other side may receive all the data in a single read of
40 bytes. Or… it may not. If you want to preserve these boundaries, it is up to you to
layer your own protocol on top of this. For example:

send (length, data), (length, data), …
Instead of

data, data, data, …

4

CS 417

UDP/IP
• Datagram service
• Packet may be lost
• Data may arrive out of sequence
• Checksum for data but no retransmit

Src port Dest port

lemgth checksum

UDP header

8 bytes

UDP/IP – User Datagram Protocol
Provides datagram service – connectionless– each packet must be addressed to the
destination
Data may be lost: it is up to the application to discover that a packet did not arrive at
its destination. Application can send acknowledgements if this is needed.
Data may arrive out of sequence: if packets take a different route via IP they may
arrive in a different order from the one sent. TCP buffers up out-of-order packets in
the kernel and presents them in the right order to the user.
A checksum for the data exists in the UDP header. If data corruption is detected
then the packet is dropped. To the application, this is the same as a lost packet.
UDP is a lighter weight protocol: header is 8 bytes vs. 20+ bytes for TCP. Linux
source for udp is around 1200 lines vs. >8000 lines for tcp.
More importantly, dealing with UDP traffic uses less kernel resources: state about
the connection, receive buffers to deal with out-of-order data, retransmission does
not have to be handled.

5

CS 417

Sockets and ports
• Sockets are a popular communication abstraction

– Allow us to address data to a destination address
and port number

– Allow us to bind our socket to a port number and
source address.

• bind
– Assign source address and port number

• connect
– Assign destination address and port number

As we’ve seen with sockets programs, sockets are a popular implementation for
achieving network communication.
After creating a socket, we use the bind system call to assign it to an address and
port number. Typically, this address is 0.0.0.0, which represents INADDR_ANY, or
any valid incoming address (particularly useful if a machine has several connections
and several IP addresses). For servers, the port number is usually chosen by the user
so that other programs will be able to specify it. For clients, one typically asks the
operating system to pick any unused port number (this is requested by setting the
port to 0 in bund).
For connection-oriented protocols (TCP), the server address and port number is
specified with the connect system call. For connectionless protocols (UDP), the
address and port number may be specified explicitly when sending data using sendto
or sendmsg system calls.

6

CS 417

Multiple senders may send from the
same address, port!
• Server

– Sets socket for listen and waits in accept
– accept returns a new socket
– Typically, a new process or thread will handle that session
– Destination address and port is the same for each socket!

Client A
Source addr: 192.168.1.2

Source port: 1212

Client B
Source addr: 192.168.1.2

Source port: 2323

Client B
Source addr: 192.168.1.5

Source port: 4321

Listener:
Source address: 207.46.230.219

Source port: 12

Process 1

Process 2

Process 3

to 207.46.230.219:12

to 207.46.230.219:12

to 207.46.230.219:12

When a server set up a socket for listening and waits for an incoming connection
with the accept call, a new socket is returned for each accepted connection.
A server will typically create a new thread or fork a new process that will be
responsible for handling that particular communication session.
Each client still addresses data to the same IP address and port number. Now that
data has to be routed to the correct socket so that the right process or thread can get
the data and all the data streams do not become interleaved.

7

CS 417

Sorting it out: routing data to the
correct socket
• Protocol Control Block

– Table
– Each entry contains:

• Local address
• Local port
• Foreign address
• Foreign port
• Is the socket used for listening?
• Reference to the socket (file descriptor)

How does the operating system get incoming data to the correct socket when
multiple sockets may have the same incoming address and port number?
The operating system maintains a structure called the Protocol Control Block
(PCB).
The PCB is a table of entries, where each PCB entry contains the following
information:

- local address: IP address bound to the socket
- local port: port number bound to the socket
- foreign address: IP address from the remote side
- foreign port: port number from the remote side
- is the socket used for listening?
- reference to the socket descriptor (file descriptor)

Each socket descriptor contains a pointer to an entry in the PCB table.

8

CS 417

socket()
• socket system call

– Allocate a new entry in PCB table

local address local port foreign address foreign port

0

listen?

0 0 0

new entry in PCB table

local address local port foreign address foreign port

0

listen?

0 0 0

new entry in PCB table

Client:

Server:

The first thing we do in using sockets is to allocate a new socket with the socket
system call. This causes a new, empty, entry to be created in the PCB table.

9

CS 417

bind()
• bind system call

– Assign local address, port

local address local port foreign address foreign port

0.0.0.0

listen?

7801 0 0

local address local port foreign address foreign port

0.0.0.0

listen?

1234 0 0

Client:

Server:

s

s

The bind system call assigns a source address to a socket. This causes the local
address and local port fields in the corresponding PCB entry (for that socket) to be
filled in.
Suppose the client binds to address 0.0.0.0 (INADDR_ANY), port 7801
Suppose the server binds to address 0.0.0.0 (INADDR_ANY), port 1234

10

CS 417

listen()
• listen system call

– Set socket for receiving connections

local address local port foreign address foreign port

0.0.0.0

listen?

7801 0 0

local address local port foreign address foreign port

0.0.0.0

listen?

1234 0 0 YES

Client:

Server:

s

s

The listen system call is used by a server to set a socket for receiving future connect
requests. This causes a flag to be set in the PCB entry for that socket

11

CS 417

connect()
• connect system call

– Send a connect request to server

local address local port foreign address foreign port

0.0.0.0

listen?

7801 0 0

local address local port foreign address foreign port

0.0.0.0

listen?

1234 0 0 YES

Client: send a connect control message [from 135.250.68.43, port 7801]

Server: waits for control messages in accept, creates new PCB entry

s

s
192.11.35.15 1234 135.250.68.43 7801snew

The connect system call is used by a client to establish a connection to the server.
The client gets the remote address and port as part of the address structure passed to
connect .
It then sends a connect control message to the server. The server should be waiting
in accept to receive this message.
When the server receives a control message,

it scans the PCB table for an entry where the connect request
matches the local address (0 matches anything) and the socket is in the listen
state (I.e., set to receive control messages).

- a new socket is allocated and a new PCB entry is created that is
associated with the new socket.

- this new PCB entry is populated with the local address on which the
connection was received and the foreign address, which is the source address of the
connect request.

12

CS 417

connect() – part 2
• connect system call

– Send a connect request to server

local address local port foreign address foreign port

0.0.0.0

listen?

7801 192.11.35.15 1234

local address local port foreign address foreign port

0.0.0.0

listen?

1234 0 0 YES

Client: send a connect control message [from 135.250.68.43, port 7801]

Server: waits for control messages in accept, creates new PCB entry

s

s
192.11.35.15 1234 135.250.68.43 7801snew

The server sends a message to the client acknowledging acceptance of the
connection. This message contains the real address and port of the server that the
client puts in its PCB entry for that socket.

Each message from the client is tagged either as a data message or a control
message (e.g. connect).
If the message is a data message:

search through the list of PCB entries for one where the foreign
address and foreign port match the incoming message
If the message is a control message:

search through the list of PCB entries for one where listen is set (and
foreign address = foreign port = 0).

13

CS 417

Programming with sockets

CS 417
Distributed Systems Design

14

CS 417

Sockets
• Goals

– inter-process communication using the same
mechanism whether the processes are on the same
machine or a different machine

– efficient
– compatibility with legacy processes that read from

and write to files
– support for different protocols and naming

conventions
• not limited to TCP/IP and UDP/IP

• Socket
– an object for sending and receiving messages

Sockets are an attempt at creating a generalized IPC (inter-process communication)
model.
They were developed by Berkeley in 1982 as part of the Berkeley version of Unix
(BSD 4.1a, with general availability in BSD 4.2 in September 1983).
The design goals were:
- have a uniform mechanism at the operating system level for inter-process
communication, independent of whether the processes are on the same
machine.

- the interface should be as efficient as possible
- any applications that do not know about networking or IPC should be
able to be given input and output file descriptors and just use them
without changes for network communication.
For example - another process may accept or initiate the communication,
create the “file” descriptors, and then hand off the descriptors to a process
(e.g., by fork & exec) that is network ignorant

- the sockets mechanism should work for a just about any naming scheme
and networking protocol - it is not meant only for TCP/IP and UDP/IP.

15

CS 417

Programming operations
Client

1. Create a socket
2. Name a socket

3c. Connect to a remote endpoint
4. Communicate
5. Close the connection

Server
1. Create a socket
2. Name a socket
3a. Set the socket for listening
3b. Accept a connection
4. Communicate
5. Close the connection

not needed for connectionless communication

The system-call level interface consists of the following operations:
1. Both the client and server need to create a socket.
2. Since the socket identifies the transport endpoint for the application,

the transport address will need to be assigned - this is known as naming
the socket. For IP communication, this means assigning a port number to
the socket.

3a. A server has to indicate that it wants to accept connections on this socket.
3b. A server will then block (go to sleep), waiting for incoming connections.
3c. A client will connect to a server.
4. Each party will communicate by sending and receiving messages.
5. When done, each party will close the connection.

For connectionless protocols, steps 3a-c are not needed. A client can just send
a message to a server and a server can block while waiting to receive a
message. It is up to the server now to disambiguate messages from different
client.

16

CS 417

Unix system call interface
• System calls:

– socket
– bind
– listen
– accept
– connect
– read/write, send/recv, sendto/recvfrom,

sendmsg/recvmsg
– close/shutdown

17

CS 417

Create a socket
socket system call:

int s = socket(domain, type, protocol);
parameters:

domain: identifies address family
e.g. AF_INET for IP, AF_UNIX for local,
AF_NS for Xeroxs Network Systems

type: type of service required by application
SOCK_STREAM - virtual circtuit
SOCK_DGRAM - datagram
SOCK_RAW - raw IP access

protocol: specify specific protocol. Used if address
family supports, say, two versions of
virtual circuit service

return: a small integer representing the socket (file descriptor)

18

CS 417

Name a socket
bind system call:

int error = bind(s, addr, addrlen);
parameters:

s: socket descriptor returned by socket()
addr: address structure (struct sockaddr *)
addrlen: length of address structure

return: error code

The bind system call allows us to assign a transport endpoint to the socket.
Analogy: socket: request a phone line

bind: request a phone number for the line
For IP services, this is where we specify the port number on which we want to
accept connections. Since the client will not be accepting connections, it generally
will not care what port number it gets, so it can specify a port of 0, in which case
the operating system will assign it an available port number.
Note - the client needs a port number because messages from the server back to the
client have to be addressed as well.
bind is a separate system call because some communication domains may not
require it. Also, some communication domains may require other custom operations
to take place on the socket before the binding is performed.

19

CS 417

Server: set socket for listening
listen system call:

int error = bind(s, backlog);
parameters:

s: socket descriptor returned by socket()
backlog: queue length for pending connections

return: error code

The listen system call is used by the server to indicate that it will accept connection
requests on that socket.
Once done, the operating system will accept such connection requests on behalf of
this socket.
The server will generally be sleeping, waiting for a connection request (via the
accept system call - next slide). When it gets the connection, it will usually fork off
another process or create/dispatch a thread to handle that request and go back to
listening for more connections. Since there is a delay between accepting a
connection request and looping back to accept another one, the listen system call
allows one to specify a backlog - a queue size for pending connections.

20

CS 417

Server: accept connections
accept system call:

int snew = accept(s, clntaddr, addrlen);
parameters:

s: socket descriptor returned by socket()
clntaddr: struct sockaddr *

contains returned client address information
addrlen: length of address information

return: a new socket to be used for this communication session

The accept system call blocks (by default) and waits until a connection comes in on
the socket.
Accept creates a new socket on which this communication session will take place.
The original socket, created with the socket system call on the server, is used only to
get connections.
In addition to returning a new socket, accept also returns information about the
address of the connecting client (could be used for authentication checking…).

21

CS 417

Client: connect
connect system call:

int error = connect(s, svraddr, addrlen);
parameters:

s: socket descriptor returned by socket()
svraddr: struct sockaddr *

contains address of server
addrlen: length of address information

return: error code

The connect system call is used by the client to connect to the server.
s - socket returned by the socket() system call
svraddr - structure containing the address of the server. The contents depend on the
transport being used
addrlen - length of the address structure. This is passed in because C does not
support polymorphism and the address structure length is a function of the transport
used.

22

CS 417

Exchange data

read/write system calls (same as for file systems)
send/recv system calls

int send(int s, void *msg, int len, uint flags);

int recv(int s, void *buf, int len, uint flags);

sendto/recvfrom system calls
int sendto(int s, void *msg, int len, uint flags,

struct sockaddr *to, int tolen);
int recvfrom(int s, void *buf, int len, uint flags,

struct sockaddr *from, int *fromlen)

sendmsg/recvmsg system calls
int sendmsg(int s, struct msghdr *msg, uint flags);
int recvmsg(int s, struct msghdr *msg, uint flags);

fo
r

co
n
n
ec

ti
o
n
-o

ri
en

te
d

se
rv

ic
e

Data can now be exchanged between client and server.
The client will treat its socket, s, as a file descriptor and use ordinary read/write
system calls on it.
The server will treat its communication socket, snew, as a file descriptor and also
use ordinary read/write system calls on it.
Alternatively, the client and server may choose to use send/recv system calls,
which support flags that may be useful for certain communication transports, such
as:

- process out of band data
- bypass routing - use direct interface
- don’t block
- don’t generate a SIGPIPE signal when either end breaks the

connection
For connectionless service, accept and listen were not invoked by the server and
connect was not invoked by the client. The server just receives messages from
anyone who sends them. The system calls sendto/recvfrom and sendmsg/recvmsg
allow addresses to be specified on the send line, along with other information. [see
man pages]

23

CS 417

Stop all further communication
file-sytem close system call:

close(s);
or

shutdown system call:

shutdown(int s, int how);
where

s: socket
how: 0: further receives disallowed

1: further sends disallowed
2: further sends and receives disallowed

A socket can be closed with the normal file-system-based close system call or, for
greater control, the shutdown call can be used. This allows one to disallow certain
types of operations (sends or receives).

24

CS 417

Using sockets in java
• java.net package

– Socket class
• deals with sockets used for communication

– ServerSocket class
• deals with sockets used for accepting connections

– DatagramSocket class
• deals with datagram packets

– both Socket and ServerSocket rely on the
SocketImpl class to actually implement sockets

25

CS 417

• Client:
– create, name, and connect are combined into

one method
– Socket constructor

– several other flavors (see api reference)
• Server:

– create, name, and listen are combined into
one method

– ServerSocket constructor

– several other flavors (see api reference)

Creating a socket

host port

Socket s = new Socket(“remus.rutgers.edu”, 2211);

ServerSocket svc = new ServerSocket(2211, 5);

port backlog

26

CS 417

Server: accept a connection
• accept method of ServerSocket

– block until connection arrives
– return a Socket

ServerSocket svc = new ServerSocket(2211, 5);
Socket req = svc.accept();

27

CS 417

Exchange data
• Obtain InputStream and OutputStream from Socket

– layer whatever you need on top of them
• e.g. DataInputStream, PrintStream,

BufferedReader, …
Example:

client
DataInputStream in = new DataInputStream(s.getInputStream());
PrintStream out = new PrintStream(s.getOutputStream());

server
DataInputStream in = new BufferedReader(

new InputStreamReader(req.getInputStream()));
DataOutputStream out = new DataOutputStream(

req.getOutputStream());

28

CS 417

Close the sockets
• Close input and output streams first:

client:

try {
out.close();
in.close();
s.close();

} catch (IOException e) {}

server:

try {
out.close();
in.close();
req.close(); // close connection socket
svc.close(); // close ServerSocket

} catch (IOException e) {}

29

CS 417

Sample programs

http://www.cs.rutgers.edu/~pxk/rutgers/src/socketdemo.tar

run:
tar xvf SocketDemo.tar

will create two directories:
jsocketdemo: java sample program
socketdemo: C sample program

each directory contains a README file.

