
Rutgers University – CS 417: Distributed Systems
©1998-2003 Paul Krzyzanowski 1

Lectures on distributed systems:

Client-server communication

Paul Krzyzanowski

Everything lives, moves, everything corresponds; the magnetic rays,
emanating either from myself or from others, cross the limitless chain
of created things unimpeded; it is a transparent network that covers
the world, and its slender threads communicate themselves by
degrees to the planets and stars. Captive now upon earth, I
commune with the chorus of the stars who share in my joys and
sorrows.
 —Gérard de Nerval, Aurélia,
 Part 2, chapter 6

Networking
F WE ARE TO BUILD DISTRIBUTED SYSTEMS, we will have an environment where
independent machines will be working cooperatively with each other without shared

memory. To work together, they will have to communicate with each other. This is where
the interconnect – the network – comes in.

Modes of connection
Communication over a network can be classified into two types:

circuit-switched
In this network, a dedicated channel exists to the remote machine. An example
is that of a telephone network: when you place a call, a dedicated circuit is
established for you to the destination. In a circuit-switched network, you are
guaranteed to have access to the full bandwidth of the circuit.

packet-switched
Connections are shared in this type of network. Data that is transported across
the network is broken up into chunks called packets. Because packets from
different sources (and to different destinations) are now intermixed, each packet
must contain the address of the destination (in a circuit-switched network, this
isn’t needed since the circuit is a dedicated connection). An ethernet network is
an example of this type of network. In a packet-switched network, the bandwidth
that you see will usually be less than the capacity of the network since you’re
sharing the channel with others.

I

Client-server communication

Rutgers University –Distributed Systems
©1998-2003 Paul Krzyzanowski 2

Parlez-vous français? ¡Sí, muy bien!
For computers (or people, for that matter) to be able to communicate, they must speak
the same language and follow the same conventions. For humans, this means speaking the
same language and knowing how low to bow, which hand gestures not to use, and
whether it is acceptable to excrete gas. For computers, this requires knowing how to find
out how long a packet is that is coming over a network (so we can get it), knowing where
the destination address is stored, and being able to properly interpret all the data within
it. The issue is non-trivial because different computers have different concepts of which
order to store bytes of a word, how long an integer is, and what character set is being
used. The instructions and conventions needed for successful communication is known as
a protocol.

To ease the task of communicating and provide a degree of flexibility, network
protocols are generally organized in layers. This allows you to replace a layer of the
protocol without having to replace the surrounding layers. It saves higher-level software
from having to bother with formatting an ethernet packet. The most popular model of
guiding (not specifying) protocol layering is the OSI Reference Model, designed in 1977 and
refined somewhat thereafter. It contains seven layers of protocols:

Layer Name Function

7 application the protocol of applications using networking,
such as file transfer, directory services, distributed
processing applications, and many others.

6 presentation responsible for the selection of an agreed-upon
syntax (data representation). This layer may have
to convert data between the agreed-upon
representation and the machine's native types.

5 session responsible for connection establishment, data
transfer, and for connection release. It tracks who
initiated a conversation and may manage the re-
establishing of a logical communication channel.

4 transport provides reliable end-to-end communications by
providing service-level (transport) addressing,
flow control, datagram segmentation, and end-to-
end error checking. It can ensure that packets
appear to arrive in the correct order and issue
retransmission requests to ensure the reliable
message delivery.

3 network relay and route information to the destination.
This layer is responsible for managing the journey
of packets between local area networks and
figuring out intermediate hops (if needed).

2 data link provides the first level of organization of data –

Client-server communication

Rutgers University –Distributed Systems
©1998-2003 Paul Krzyzanowski 3

the datalink frame, which includes source address,
destination address, content, and some form of
checksum for error detection.

includes Media Access Control (MAC) and
Logical Link Control (LLC). MAC covers rules for
accessing the media and dealing with contention.
The LLC portion covers frame synchronization,
flow control, and error checking.

1 physical deals with the specification of the data signals,
voltage levels, transmission speed, and connectors.

Some networking terminology
This section will provide a whirlwind tour of some of the more commonly encountered
terms encountered in networking.

A local area network (LAN) is a communication network that covers a small area (a
few rooms, a building, or a set of buildings), incorporates a shared transmission medium,
and offers a relatively high data rate (typically 1 Mbps – 1 Gbps) with relatively low
latency. The devices on a LAN are peers, so that any device can initiate a data transfer
with any other device. Most elements on a LAN are workstations. This covers most any
computing device, including PCs, Macs, Suns, etc. Workstations and other endpoints
(devices) on a LAN are called nodes.

For a node to be connected to the LAN, interface hardware is needed. This is known
as an adapter and is a circuit that usually sits on an expansion slot on a PCI or PCMCIA
bus. Networking adapters are referred to as Network Interface Cards, or NICs.

Media refers to the wires (or wireless RF) connecting together the devices that make
up a LAN. The following types of media are generally encountered:

- Twisted Pair is the most common. It typically has eight wires and comes in two
flavors: shielded twisted pair (STP) or the more common unshielded twisted
pair (UTP). Telephone cable is an example of UTP.

- Coaxial cable (coax) comes in two flavors as well. Thin coax (similar to TV
cable) is by far the more popular of the two. Thick coax is now largely
obsolete. Thin coax is rarely seen in LANs as well.

- Fiber
- Wireless

A hub is a device that acts as a central point for LAN cable. A switch moves data from
any input port to a specific destination port. Concentrators or repeaters regenerate data
when passing through, allowing data to pass through longer distances. Bridges connect
different LAN segments together (layer 2). Routers determine the next network point to
which packets should be forwarded – they connect different types of local and wide area
networks. Another frequently-encountered device is a CSU/DSU (Channel Service

Client-server communication

Rutgers University –Distributed Systems
©1998-2003 Paul Krzyzanowski 4

Unit/Data Service Unit). This is a device that interfaces between a local area network and
a wide area network (a leased data line). It converts a serial stream of data from a LAN to
TDM (time-division multiplexed) frames on the data line (e.g., a T-1 line). This brings us
to the T-1: the T-1 is the most commonly used digital line in the U.S., providing 24
channels with an aggregate data rate of 1.544 Mbps. A T-3 line is also frequently
encountered and provides a transmission rate of 44.736 Mbps.

Ethernet is the most common networking technology. It was developed in the mid
1970's at Xerox PARC and standardized by the IEEE 802.3 committee. It is a baseband
transmission network. This means that all nodes share access to the network media on an
equal basis. Data uses the entire bandwidth of the media. This is opposed to broadband
transmission, where a given data transmission uses only a segment of the media by
dividing the media into channels. The typical speed of transmission on an Ethernet
network is 100 Mbps, with speeds going up to 1 Gbps. Older Ethernet networks generally
transmitted at 10 Mbps. Network access on an Ethernet is a mechanism called Carrier
Sense Multiple Access with Collision Detection (CSMA/CD). To send data, a node first
listens to the network to see if it is busy (i.e., someone else is sending data). When the
network is not busy, the node will send data and then sense to see whether a collision
occurred because some other node decided to transmit data concurrently. If a collision
was detected, the data is retransmitted. The analogy of CSMA/CD is that of a party line on
a telephone.

The original Ethernet media was thick coax, which was called 10Base5 because the
maximum length of a cable run was 500 meters. Thin coax replaced thick coax, and is
called 10Base2 (with a maximum run of 200 meters). Both 10base5 and 10Base2 cables
were organized in a bus topology, with any number of nodes plugging into the same cable
run. The most common Ethernet media now is 10BaseT, which is a twisted pair cable
organized into a star topology (with a central hub). Each node has a dedicated cable that
connects to the central hub (or switch).

Clients and servers
The most common networking relationship is the client-server model. The model
contains three components: a client, a server, and a service. A service is that task that a
machine can perform (such as offering files over a network or the ability to execute a
command). A server is the machine that performs the task (the machine that offers the
service). A client is the machine that is requesting the service. These titles are generally
used in the context of a particular service rather than in labeling a machine: one
machine’s client may be another machine’s server.

To offer a service, a server must get a transport address for a particular service. This is a
well-defined location (similar to a telephone number) that will serve to identify the
service. The server associates the service with this address before clients can communicate
with it.

Client-server communication

Rutgers University –Distributed Systems
©1998-2003 Paul Krzyzanowski 5

The client, wishing to obtain a service from the server, must obtain the transport
address. There are several ways to do this: it may be hard-coded in an application or it may
be found by consulting a database (similar to finding a number in a phone book). The
database may be as simple as a single file on a machine (e.g. /etc/services on Unix
systems) or as complex as accessing a distributed directory server.

We depend on transport providers to transmit data between machines. A transport
provider is a piece of software that accepts a network message and sends it to a remote
machine. There are two categories of transport protocols:

connection-oriented protocols - these are analogous to placing a phone call:
 ♦ first, you establish a connection (dial a phone number)

 ♦ possibly negotiate a protocol (decide which language to use)

 ♦ communicate

 ♦ terminate the connection (hang up)
This form of transport is known as virtual circuit service (it provides the illusion of
having a dedicated circuit). Messages are guaranteed to arrive in order. When a true
dedicated circuit is set up (as in a real telephone connection), then the service is
not virtual, but true circuit switched service.

connectionless protocols - these are analogous to sending mail:
♦ there is no connection setup

♦ data is transmitted when ready (drop a letter in the mailbox)

♦ there’s no termination because there was no call setup
This transport is known as datagram service. With this service, the client is not
positive whether the message arrived at the destination. It’s a cheaper but less
reliable service than virtual circuit service.

Internet Protocol
By far the most popular network protocol these days is the family of Internet Protocols.
The Internet was born in 1969 as a research network of four machines that was funded by
the Department of Defense’s Advanced Research Projects Agency (ARPA). The goal was
to build an efficient, fault-tolerant network that could connect heterogeneous machines
and link together separately connected networks. The network protocol is called the
Internet Protocol, or IP. It is a connectionless protocol that is designed to handle the
interconnection of a large number of local and wide area networks that comprise the
Internet.

IP may route a packet from one physical network to another. Every machine on an IP
network is assigned a unique 32-bit IP address. When an application sends data to a
machine, it must address it with the IP address of that machine. The IP address is not the
same as the machine address (e.g. the ethernet address) but strictly a logical address.

Client-server communication

Rutgers University –Distributed Systems
©1998-2003 Paul Krzyzanowski 6

A 32-bit address can potentially support 232, or 4,294,967,296 addresses. If every
machine on an IP network would receive an arbitrary IP address, then routers would need
to keep a table of over four billion entries to know how to direct traffic throughout the
Internet! To deal with this more sensibly, routing tables were designed so that one entry
can match multiple addresses. To do this, a hierarchy of addressing was created so that
machines that are physically close together (say, in the same organization) would share a
common prefix of bits in the address. For instance, consider the two machines:

name address address (in
hex)

cs.rutgers.edu 128.6.4.2 80 06 04 02
remus.rutgers.edu 128.6.13.3 80 06 0d 03

The first sixteen bits identify the entire set of machines within Rutgers University.

Systems outside of Rutgers that encounter any destination IP address that begins with
0x8006 have only to know how to route those packets to some machine (router) within
Rutgers that can take care of routing the exact address to the proper machine. This saves
the outside world from keeping track of up to 65,536 (216)machines within Rutgers.

An IP address consists of two parts:
• network number — identifies the network that the machine belongs to
• host number — identifies a machine on that network.

The network number is used to route the IP packet to the correct local area network.
The host number is used to identify a specific machine once in that local area network. If
we use a fixed 16-bit partition between network numbers and host numbers, we will be
allowed to have a maximum of 65,536 (216) separate networks on the Internet, each with a
maximum of 65, 536 hosts. The expectation, however, was that there would be a few big
networks and many small ones. To support this, networks are divided into several classes.
These classes allow the address space to be partitioned into a few big networks that can
support many machines and many smaller networks that can support few machines. The
first bits of an IP address identify the class of the network.

class leading bits bits for network number bits for host number

A 0 7 24

B 10 14 16

C 110 21 8

An IP address is generally written as a sequence of four bytes in decimal separated by
periods. For example, an IP address written as 135.250.68.43 translates into the
hexadecimal address 87FA442B (135=0x87, 250=0xfa, etc.). In binary, this address is
1000 0111 1111 1010 0100 0100 0010 1011. The leading bits of this address are 10, which
identifies the address as belonging to a class B network. The next 14 bits
(00 0111 1111 1010) contain the network number (7FA) and the last 16 bits contain the
host number (442B).

Client-server communication

Rutgers University –Distributed Systems
©1998-2003 Paul Krzyzanowski 7

To allow organizations to create additional networks without requesting additional
(and increasingly scarce) network numbers, some high bits of the host number may be
allocated for a network number within a higher-level IP network. These local networks are
known as subnets. Routers within an organization can be configured to extract this
additional network ID and use it for routing. For example, a standard class B network
allows 16 bits for a host number. This host address may be locally broken into 8 bits for a
subnet ID followed by 8 bits for a host ID.

A machine that is connected to several physical networks will have several IP
addresses, one for each network.

IP also supports several special addresses. They are the following:
all bits 0 (valid only as a source address) refers to “all addresses for

this machine”. This is not a valid address to send over the
network but is used when offering a service to state that
it is available to all networks that are connected to this
machine (this will make sense when we look at sockets
and binding)

all host bits 1 (valid only as a destination address) broadcast address:
send to all machines on the network. An address
192.10.21.255 means “send the packet to all machines
on network 192.10.21.”

all bits 1 (valid only as a destination address) broadcast to all
machines on every directly connected network.

all bits 1 on a class
A network

refers to the local host. Sending data to this address
causes it to loop back to the same machine. The typical
address used is 127.0.0.1

Leading bits 1110 identifies a class D network. The remaining 28 bits
identify a multicast group. A multicast packet is received
by all members that are members of that multicast
group. A machine may join or leave a multicast group at
any time. This address is useful for teleconferencing
and sending network video and audio.

Machines in an IP network are named in a hierarchical manner, with each level

separated by a dot. Names to the left are lower in the hierarchy. For example, the name
bescot.cl.cam.ac.uk identifies a machine named bescot in England (uk), under
the Academia hierarchy (ac), within Cambridge University (cam), within the Computer
Laboratory (cl). An IP address can only be found by looking it up in some database. In
the past, the database was a single file (/etc/hosts) that contained the address of every
machine. As the Internet grew, that file became difficult to manage. Now, in most cases,
you would contact a name service offered by some machine that may in turn contact other

Client-server communication

Rutgers University –Distributed Systems
©1998-2003 Paul Krzyzanowski 8

name servers until it finds a machine that knows the address for a given name. These
name servers are known as Domain Name Servers, or DNS.

Running out of addresses
As the Internet expanded in the late 1980’s and especially the early 1990’s to include
more networks and more hosts, the three-layer class hierarchy of IP addresses was getting
stressed. More and more organizations wanted to be on the Internet. To be on the
Internet, each machine would need an IP address. An organization would request an IP
network address for a class that was sufficiently large to accommodate all of its machines.

The problem we were having with class-based Internet addressing was not in running
out of IP addresses (exhausting all possible IP addresses) but rather running out of IP
network addresses (of which there are only two million available). Many organizations
also wanted more than a class C network and there are only a bit over 16,000 class A and B
networks available.

While the class-based IP addressing scheme can accommodate close to four million
distinct addresses, the problem was that the class-based network granularity was too
coarse. For example, a class C network can support up to 2541 host numbers. If an
organization needed up to 1,000 hosts, it would need to request a far more precious class
B network (of which there are only 16,382 such networks to allocate). The class B network
will allow it to have up to 65,534 host numbers, meaning that over 64,000 IP addresses, or
over 98% of the address space, will go unused.

To combat this problem, a routing structure called Classless Inter-Domain Routing
(CIDR) was created. This is a structure that attempts to provide a better match between
the range of addresses assigned to an organization and the number of addresses the
organization really needs.

The practice of identifying a class of network (A, B, or C) by looking at the leading
bits of the IP address was abandoned. Instead, an IP network number is defined to be a n
arbitrary number2 of leading bits of an address. Using the earlier example, if an
organization needed to support 1,000 hosts, it would request a class B address, wasting
over 64,000 addresses. Now it can request a 22-bit network number, which provides it with
10 bits of addressing for hosts, enough for 1,022 machines.

Since we can no longer look at the leading bits of an IP address and know how many
of the following bits constitute the network number, each entry in the routing table now
has to contain this number explicitly. A CIDR IP address includes the standard 32-bit IP
addresses and information on the number of bits for the network prefix (for example,
128.6.13.3/16, where the 16 refers to a sixteen bit network number). The pitfall of CIDR

1 We calculate this via 2(host bits)-2, subtracting two to disallow addresses of all 1 bits and all 0 bits.
2 Address registries may choose to limit the ranges of addresses they assign – a lot of tiny networks will yield overly large
routing tables. The American Registry for Internet Numbers (ARIN) does not allocate prefixes longer than 20 or shorter
than 13 bits. The European registry (RIPE) has 19 bits as its smallest allocation.

Client-server communication

Rutgers University –Distributed Systems
©1998-2003 Paul Krzyzanowski 9

is that one now has to manage the prefixes as well as addresses. When routing tables are
distributed, they must include the prefixes for the addresses to make sense.

CIDR requires router tables contain both an IP address and the number of bits for the
network prefix. This structure helps alleviate another problem in IP networking: large
global routing tables. With class-based IP addressing, every network had to have a routing
entry in global routers on the Internet. This was both an administrative pain and a
performance bottleneck. If network addresses can be assigned “sensibly”, routing tables
can be simplified. If adjacent network addresses are generally routed in the same way (for
example, they belong to the same ISP and the routes split up only when they get to that
ISP’s network), then the global routing tables do not need to contain all those networks;
they can simply specify that less bits are significant for the route (i.e., as far as the router is
concerned it is a single route to the network with less bits being used for the network
number).

Another innovation in IP addressing also helped alleviate the problem of assigning
network addresses to organizations. The idea is that if every machine in an organization
does not need to be addressed from the Internet, it need not have a unique IP address.
Machines within an organization now can have internal IP addresses that are not unique
across the Internet but only unique within the organization. Whenever a machine sends a
packet outside the organization, it is routed through a gateway that will translate the
address from an internal address to an external address. This will be the address of the
gateway system (which must have a true external IP address). In translating the address,
the gateway will keep a table of the original address and port number and the outgoing,
translated, port number. When a return packet comes for that port number, the gateway
identifies it as a response to the original packet and rewrites the destination in the IP
header as the internal address and port number of the original sender. This scheme is
known as network address translation, or NAT. The biggest benefit of NAT is that large
organizations no longer need to request a network that can address thousands or tens of
thousands of hosts. They only need to support the number of hosts that need to be visible
from the Internet (e.g., those running services) as well as gateways.

How do you really get to the machine?
IP is a logical network that sits on top of multiple physical networks. Operating systems that
support communication over IP have software that is called an IP driver. The IP driver is
responsible for:

• getting operating parameters from the device driver (which controls the
network card) such as maximum packet size, functions to initialize the
hardware headers, and the length of the hardware header

• routing packets from one physical network to another
• fragmenting packets – it might have to send a packet that’s too big for the

network hardware to handle in which case it has to be split into several packets,
each with its own IP header containing destination information

Client-server communication

Rutgers University –Distributed Systems
©1998-2003 Paul Krzyzanowski 10

• performing send operations from higher level software
• receiving data from the device driver
• dropping data with bad checksums in the header
• dropping expired packets

The device driver for the network interface is responsible for controlling the network
interface card. Its behavior is similar to that of character device drivers. It must:

• process interrupts from the network interface, receive packets, and send them
up to the IP driver [bottom half]

• get packets from the IP driver and send them to the hardware, ensuring that
the packet goes out without a collision (in a shared network such as an
Ethernet, a packet may collide with another packet and not be sent) [top half]

The network device typically understands a much simpler interface. For example, an
Ethernet device is addressed by a unique Ethernet address or a broadcast address. This
address has no relation to the IP address of a machine. The hardware looks at all packets
traveling down the wire and picks up
those in which the destination address
on the Ethernet header matches the
address of the device. Before an IP packet can be sent, it has to be enveloped with the
necessary information for the network device (such as the device address and length of
packet).

The device (Ethernet) address can be found with a facility called ARP, the Address
Resolution Protocol. ARP converts an IP address to a local device (for example, Ethernet)
address by taking the following steps:

• check the local ARP cache
• send a broadcast message requesting the Ethernet address of a machine with a

certain IP address
• wait for a response (with a time out period)

Routing
How does a packet find its way from here to there? A switching element is used to connect
two or more transmission lines (e.g., Ethernet networks). This switching element is known
as a router. It can be a dedicated piece of hardware or a general-purpose computer with
multiple network interfaces. When it gets packet data, it has to decide to which line the
data has to be sent. This job is called routing. When a router receives an IP packet, it
checks the destination address. If the destination address matches that of the receiving
system, then the packet is delivered locally. Otherwise, router uses the destination address
to search a routing table. Each entry in the table has an address, the number of significant
bits (usually represented by a bit mast known as a netmask), and an outgoing interface.
When an entry is located that matches the IP destination address (not counting the bits
outside the netmask), the packet can be sent out on the interface defined on that line.

IP header IP data
device
header

Client-server communication

Rutgers University –Distributed Systems
©1998-2003 Paul Krzyzanowski 11

This technique is known as static routing. An alternative to static routing is dynamic
routing, which is a class of protocols by which machines can adjust routing tables to
benefit from load changes and failures.

Protocols over IP
IP supports two transport layer protocols and one special protocol. The special protocol is
called ICMP — the Internet Control Message Protocol. It is responsible for generating control
messages and is datagram based. It sends a message to the originator whenever an IP
packet is dropped and also generates advisory messages (such as “slow down” or “here’s a
better route”). The two transport layer protocols over IP are:

TCP — Transport Control Protocol

• virtual circuit service (connection-oriented)

• sends acknowledgment for each packet received

• checksum to validate data contents

• data may be transmitted simultaneously in both directions over a circuit

• no record markers (one write may have to be read with multiple reads)
but data arrives in sequence

UDP — User Datagram Protocol

• datagram service (connectionless)

• data sent may be lost

• data may arrive out of sequence

• recipient’s address must be specified in each request

Applications may use either of these protocols to send data over the network.

Client-server communication

Rutgers University –Distributed Systems
©1998-2003 Paul Krzyzanowski 12

Asynchronous Transfer Mode (ATM) networks
One of the serious pitfalls of IP networking is that it has no mechanisms for an application
to specify how the traffic that it generates is to be scheduled over the network. This causes
problems in continuous media applications such as video and voice. In these applications,
excessive delays in packet delivery can produce unacceptable results. IP version 6, the
emerging IP standard, attempts to alleviate this somewhat by allowing applications to tag
packets with a priority level, but this does not translate directly to bits per second. Another
form of networking emerged in the late 1980’s and was adopted as an international
standard. This form is known as ATM, or Asynchronous Transfer Mode, networking. Its
goal is to merge voice and data networking. The former is characterized by a low, but
constant bandwidth. The later tends to be bursty in bandwidth requirements (0 one
minute, 100 Mbps the next). Circuit switching is too costly for data networking since it is a
waste of resources to allocate a fixed-bandwidth circuit to bursty traffic. IP-style packet
switching, on the other hand, is not suitable for the constant bandwidth requirements for
voice telephony.

ATM attacks the problem by using fixed-size packets over virtual circuits. A sender
establishes a connection, specifying the bandwidth requirements and traffic type. Traffic
type may be constant bandwidth rate (CBR), variable bandwidth with bounded delay
(VBR), or available bandwidth (ABR)3. If the connection is accepted, a route is
determined and routing information is stored in switches within the network. All traffic is
carried in fixed-size cells. Fixed size cells provide for predictable scheduling (a large
packet is not going to hold up smaller ones behind it) and rapid switching.

3 Uncompressed voice and video traffic would require CBR scheduling. Compressed video or audio would provide
parameters for minimum, average, and peak bandwidth, and request VBR service. Generic data services (e.g. telnet, web
access) would request ABR service.

TCP UDP

IP

Driver 1 Driver 1 Driver 1

Network 1 Network 2 Network 2

application application application

Client-server communication

Rutgers University –Distributed Systems
©1998-2003 Paul Krzyzanowski 13

physical layer

ATM layer

ATM Adaptation layer
(AAL)

upper layers

ATM protocol stack

The current standard for an ATM cell is an inconvenient 53-byte size: 48 bytes for data
and 5 bytes for the header. To avoid congesting a computer with millions of interrupts
per second (one interrupt for each incoming packet), the
ATM hardware often supports the splitting of larger chunks of
data into multiple ATM cells and assembling incoming ATM
cells into larger packets. This is called an ATM adaptation layer
(AAL). A few adaptation layers exist for handling different
traffic types (e.g. AAL 1 for constant bit rate traffic, AAL 2 for
variable bit rate traffic, &c.). Perhaps the most popular for data
networking is AAL 5. Outbound data is fragmented into
multiple ATM cells with a bit set in a field in the last cell to
indicate an end of packet. The destination, accepting the
packet, simply assembles the cells coming in on that circuit until it gets a cell with an end
of packet bit set. At that point, it can deliver the full data packet up to the upper layers of
the system software. Compatibility with IP (useful for legacy applications) can be achieved
by running the IP protocol over the ATM layer, segmenting and reassembling each IP
packet into ATM cells.

While ATM solves a number of problems present in IP/Ethernet networks, its switches
and interface boards remain more expensive and Ethernet keeps getting faster, delaying
the need for precise cell-level scheduling.

Accessing applications
We now know how data is sent and received between machines. How do we associate a
connection (TCP) or data packets (UDP) with an application? Earlier we mentioned that
a server must be able to get a transport address for a service and associate that address with
the service. The client must be able to figure out this address and access the service
through it.

One popular implementation is the concept of sockets, which were developed in
Berkeley4. Sockets are an attempt at creating a generalized IPC model with the following
set of goals:

• communication between processes should not depend on whether they are on
the same machine

• efficiency: this should be an efficient layer on top of network communication
facilities

• compatibility: processes that just read from a standard input file and write to a
standard output file should continue to work in distributed environments

• must support different protocols and naming conventions (different
“communication domains” or “address families”)

4 Another implementation that may be worth learning if you plan to do network programming is UNIX
System V’s Transport Layer Interface (TLI) and streams modules. In UNIX System V release 4, sockets are
implemented as a library on top of streams.

Client-server communication

Rutgers University –Distributed Systems
©1998-2003 Paul Krzyzanowski 14

The socket is an abstract object from which messages are sent and received. It is
created in a communications domain roughly similar to a file being created in a file
system. Sockets exist only as long as they are referenced. A socket allows an application to
request a particular style of communication (virtual circuit, datagram, message-based, in-
order delivery,…). Unrelated processes should be able to locate communication
endpoints, so sockets should be named. The name is something that is meaningful within
the communications domain.

Programming with sockets
There are several steps involved in creating a socket connection. As with the entire area of
networking, this section cannot cover the entire topic fully. Several of the references listed
provide more complete information. On-line manual pages will provide you with the latest
information on acceptable parameters and functions. The interface described here is the
system call interface provided by the Solaris operating system and is generally similar
amongst all Unix systems (and many other operating systems).

1. Create a socket
A socket is created with the socket system call:

 int s = socket(domain, type, protocol)
All the parameters as well as the return value are integers.

• domain, or address family—communication domain in which the socket should
be created. Some of address families are AF_INET (IP family), AF_UNIX (local
channel, similar to pipes), AF_NS (Xerox Network Systems protocols).

• type—type of service. This is selected according to the properties required by
the application: SOCK_STREAM (virtual circuit service), SOCK_DGRAM
(datagram service), SOCK_RAW (direct IP service). Check with your address
family to see whether a particular service is available.

• protocol—indicate a specific protocol to use in supporting the sockets
operation. This is useful in cases where some families may have more than one
protocol to support a given type of service.

The return value is a file descriptor (a small integer). The analogy of creating a
socket is that of requesting a telephone line from the phone company.

2. Name a socket
When we mention naming a socket, we are talking about assigning a transport address to
the socket. This operation is called binding an address. The analogy is that of assigning a
phone number to the line that you requested from the phone company in step 1 or that
of assigning an address to a mailbox.

You can explicitly assign an address or allow the system to assign one. The address is
defined in a socket address structure. Applications find addresses of well-known services

Client-server communication

Rutgers University –Distributed Systems
©1998-2003 Paul Krzyzanowski 15

by looking up their names in a database (e.g., the file /etc/services). The system call
for binding is:

 int error = bind(s, addr, addrlen)
where s is the socket descriptor obtained in step 1, addr is the address structure
(struct sockaddr *) and addrlen is an integer containing the address length. One
may wonder why don’t we name the socket when we create it. The reason is that in some
domains it may be useful to have a socket without a name. Not forcing a name on a socket
will make the operation more efficient. Also, some communication domains may require
additional information before binding (such as selecting a grade of service).

3a. Connect to a socket (client)
For connection-based communication, the client initiates a connection with the connect
system call:

 int error = connect(s, serveraddr, serveraddrlen)
where s is the socket (type int) and serveraddr is a pointer to a structure containing
the address of the server (struct sockaddr *). Since the structure may vary with
different transports, connect also requires a parameter containing the size of this
structure (serveraddrlen)

For connectionless service, the operating system will send datagrams and maintain an
association between the socket and the remote address.

3b. Accept a connection (server)
For connection-based communication, the server has to first state its willingness to accept
connections. This is done with the listen system call:

 int error = listen(s, backlog)
The backlog is an integer specifying the upper bound on the number of pending

connections that should be queued for acceptance. After a listen, the system is listening for
connections to that socket. The connections can now be accepted with the accept system
call, which extracts the first connection request on the queue of pending connections. It
creates a new socket with the same properties as the listening socket and allocates a new
file descriptor for it. By default, socket operations are synchronous, or blocking, and accept
will block until a connection is present on the queue. The syntax of accept is:

 int s;
struct sockaddr *clientaddr;
int clientaddrlen = sizeof(struct sockaddr);
int snew = accept(s, clientaddr, &clientaddrlen);

The clientaddr structure allows a server to obtain the client address. accept
returns a new file descriptor that is associated with a new socket. The address length field
initially contains the size of the address structure and, on return, contains the actual size

Client-server communication

Rutgers University –Distributed Systems
©1998-2003 Paul Krzyzanowski 16

of the address. Communication takes place on this new socket. The original socket is used
for managing a queue of connection requests (you can still listen for other requests on
the original socket).

4. Exchange data
Data can now be exchanged with the regular file system read and write system calls
(referring to the socket descriptor). Additional system calls were added. The send/recv
calls are similar to read/write but support an extra flags parameter that lets one peek at
incoming data and to send out-of-band data. The sendto/recvfrom system calls are like
send/recv but also allow callers to specify or receive addresses of the peer with whom they
are communicating (most useful for connectionless sockets). Finally, sendmsg/recvmsg
support a full IPC interface and allow access rights to be sent and received. Could this
have been designed cleaner and simpler? Yes. The point to remember is that the
read/write or send/recv calls must be used for connection-oriented communication and
sendto/recvfrom or sendmsg/recvmsg must be used for connectionless communication.
Remember that with stream virtual circuit service (SOCK_STREAM) and with datagram
service (SOCK_DGRAM) the other side may have to perform multiple reads to get results
from a single write (because of fragmentation of packets) or vice versa (a client may
perform two writes and the server may read the data via a single read).

5. Close the connection
The shutdown system call may be used to stop all further read and write operations on a
socket:

 shutdown(s);

Synchronous or Asynchronous
Network communication (or file system access in general) system calls may operate in two
modes: synchronous or asynchronous. In the synchronous mode, socket routines return only
when the operation is complete. For example, accept returns only when a connection
arrives. In the asynchronous mode, socket routines return immediately: system calls
become non-blocking calls (e.g., read does not block). You can change the mode with the
fcntl system call. For example,

 fcntl(s, F_SETFF, FNDELAY);
sets the socket s to operate in asynchronous mode.

Client-server communication

Rutgers University –Distributed Systems
©1998-2003 Paul Krzyzanowski 17

Sockets under Java
Java provides several classes to enable programs to use sockets. They are found in the
java.net package. The various classes provide for client sockets, server sockets (which can
accept connections), and low-level datagram objects.

Client sockets
A client that wants to establish a socket connection to a server, it creates a Socket with a
constructor such as:

Socket s = new Socket(host, port);
Several forms of this constructor exist, allowing you to specify an Internet address

instead of a host name, allowing you to specify a local address (useful when you want to
limit the socket to a specific network), and allowing you to specify whether you want
virtual circuit (stream) or datagram connectivity. For example, to open a datagram
(UDP/IP) connection to the who service on port 513 on cs.rutgers.edu:

Socket s = new Socket("cs.rutgers.edu", 513, false);

The final parameter is true for virrtual circuit service and false for datagram service.
Now the program can obtain an InputStream and an OutputStream:

InputStream in = s.getInputStream();
OutputStream out = s.getOutputStream();

InputStream and OutputStream are part of the java.io package and support read and
write methods respoectively, allowing data to be read from and written to the socket. After
the work is done, the socket can be closed with the close method:

s.close();

Server sockets
A server socket is a socket that is set up for listening for connection requests for clients. At
the system call level, it is a socket that is listening for connections (listen system call). In
Java, this is encapsulated into a ServerSocket class. There are several forms of the
constructor; a useful one is:

ServerSocket svc = new ServerSocket(int port, int backlog);
Here, the port is the port number (transport address) that clients will connect to and

backlog is a queue length to enable the operating system to buffer up connections until
they are serviced (so that simultaneous connections do not get dropped). Once you have
a ServerSocket, you can use the accept method to wait for (block on) connections:

Socket req = svc.accept();

Client-server communication

Rutgers University –Distributed Systems
©1998-2003 Paul Krzyzanowski 18

When a connection from a client is received, accept returns a new socket. This socket
can be used for communication with the application by obtaining an InputStream and
OutputStream as in client sockets. For example,

DataInputStream in = new DataInputStream(req.getInputStream());
PrintStream out = new PrintStream(req.getOutputStream());

To close the connections, whatever streams, readers, writers, et al. were created should
be closed. Finally, the socket should be closed. In this example, on the client:

in.close();
out.close();
s.close()

On the server:

in.close();
out.close();
req.close();
svc.close();

Directing sockets: what goes on inside the operating system
We’ve seen how we can address an application with sockets by specifying a <machine, port
number> tuple. If we look at this more carefully, we notice that the server, upon
performing an accept, gets a new socket on which to accept communications for that socket
and yet the clients need to only address the machine and port number. The operating
system is responsible for routing a packet to its destination socket.

Here’s how it works: The server does a socket system call and gets a file descriptor (a
socket) from the operating system. Then it binds that socket to a port number and tells the
operating system that it’s willing to accept connections with the listen system call. It then
sleeps in accept waiting for a connection. When a new connection comes in, the accept
returns with a new socket. In this case, another socket does not mean a binding to yet
another port number. When a socket is created with the socket system call, a structure
called the protocol control block (PCB) is allocated and initialized to 0. The protocol
control block for that socket contains the following:

server:
local address local port foreign address foreign port

 0 0 0

When we bind to a socket, the local port and address are assigned to it. Let’s say we
bind to address 0 (any address for this host) and port 1234:

server:
local address local port foreign address foreign port

0,0,0,0 1234 0 0

Now we can listen on this socket and accept a connection.

Client-server communication

Rutgers University –Distributed Systems
©1998-2003 Paul Krzyzanowski 19

At this time, let’s see what the client does. It also creates a socket and a protocol
control block entry that’s initialized to 0:

client:
local address local port foreign address foreign port

0 0 0 0

Let’s say that we don’t bind to an explicit port number. The OS decides on a local
port number that the socket will own and fills in the protocol control block entry
appropriately (let’s say it picks port 7801):

client:
local address local port foreign address foreign port

0 7801 0 0

When the client does a connect to the server (connect to the server on port 1234), it
sends along its address (its IP address on that particular network) and its port number. If
we assume that the client is 125.250.68.43 and the server is 192.11.35.15:

connect to server: send 135.250.68.43:7801 to 192.11.35.15:1234.

Now, back to the server. The server, sleeping in accept, accepts the new connection and
returns a new socket descriptor back to the application. The operating system allocates a
new protocol control block that is a copy of the one on which we were listening but has
the foreign address/port fields filled with what the client sent:

sever:
local address local port foreign address foreign port

0.0.0.0 1234 0 0
0.0.0.0 1234 135.250.68.43 7801

The server then sends an acknowledgment back to the client containing its real
address and port number. The client now fills that into its PCB entry:

client:
local address local port foreign address foreign port

0 7801 192.11.35.15 1234

Every message from the client is tagged as being data or control (such as a connect). If
it is data, the operating system searches through the list of PCB’s that have the foreign
address and port matching those in the incoming message. If it is a control message, the
operating system searches for a PCB with 0’s for the foreign address and port.

So, even though we have one port number and one application listening (for
address,port=0,0), we can have multiple outstanding data connections, each uniquely
identified by the set (local address, local port, foreign address, foreign port).

Client-server communication

Rutgers University –Distributed Systems
©1998-2003 Paul Krzyzanowski 20

References

Computer Networks, Andrew Tanenbaum, Second edition ©1989 Prentice Hall.
[covers networking protocols and theory]

Connected: An Internet Encyclopedia, Third Edition. IP Addressing Review,
http://www.freesoft.org/CIE/Course/Subnet/1.htm

Distributed Operating Systems, Andrew Tanenbaum, ©1995 Prentice Hall. [provides a
brief description of ATM and coverage of sockets, NFS]The Design and Implementation
of the 4.3 BSD UNIX® Operating System, S.J. Leffer, M.K. McKusick, M.J. Karels, J.S.
Quarterman, ©1989 Addison-Wesley Publishing Co. [describes the design and
implementation of sockets]

JAVA in a Nutshell: A Desktop Quick Reference, David Flanagan, © 1997 O'Reilly &
Associaes, Inc. [a concise reference to Java and the JDK]

Modern Operating Systems, Andrew Tanenbaum, ©1992 Prentice Hall. [provides a
high level description of NFS, sockets, and networking in general]

Networking Applications on UNIX System V Release 4, Michael Padovano, ©1993 Prentice
Hall. [good coverage of socket programming and TLI programming; nicely written
with good explanations of why you may want to choose one system over another and
what to watch out for; also discusses NFS and RFS file systems]

Classless Inter-Domain Routing (CIDR) Overview, Pacific Bell Internet,
http://public.pacbell.net/dedicated/cidr.html

TCP/IP Illustrated, Volume 1: The Protocols, W. Richard Stevens, ©1994 Prentice Hall.
[if you want to learn a lot about the TCP protocol, this is the book to get]

UNIX Network Programming, W. Richard Stevens, ©1990 Prentice Hall. [thorough
coverage of sockets programming, authentication, TLI programming, and IPC for
UNIX]

