
CS 419: Computer Security

Paul Krzyzanowski

Week 8: Containment

© 2025 Paul Krzyzanowski. No part of this
content may be reproduced or reposted in
whole or in part in any manner without the
permission of the copyright owner.

March 24, 2025 CS 419 © 2025 Paul Krzyzanowski 2

Containment
Part 3

Compromised applications
• Some services run as root

• What if an attacker compromises the app and gets root access?
– Create a new account
– Install new programs
– “Patch” existing programs (e.g., add back doors)
– Modify configuration files or services
– Add new startup scripts (launch agents, cron jobs, etc.)
– Change resource limits
– Change file permissions (or ignore them!)
– Change the IP address of the system

• Even without root, what if you run a malicious app – or exploit a path traversal bug?
– It has access to all your files
– Can install new programs in your search path
– Communicate on your behalf

3March 24, 2025 CS 419 © 2025 Paul Krzyzanowski

Isn't access control good enough?
• Limit damage via access control
– E.g., run services as a low-privilege user
– Set proper read/write/search controls on files … or role-based policies

• ACLs are based on users, not applications
– Processes run with the privilege of the user
– Workaround: create a dummy user and run a setuid process with that user as the owner
– Cannot set permissions for a process: “don’t allow access to anything else”
– At the mercy of default (other) permissions

• We are responsible for setting the protections of every file on the system that could be
accessed by an application
– And hope users don’t change that
– Or use more complex mandatory access control mechanisms … if available

Not high assurance
March 24, 2025 CS 419 © 2025 Paul Krzyzanowski 4

Containment: prepare for the worst
• An application may be untrusted or compromised

• Limit an application to use a subset of the system’s resources
– Defense-in-depth strategy: even if we have other protection mechanisms in

place, create another layer of defense

• Prevent a misbehaving application from harming the rest of the
system

March 24, 2025 CS 419 © 2025 Paul Krzyzanowski 6

Not just files
Other resources to protect
• CPU time

• Amount of memory used: physical & virtual

• Disk space

• Network identity & access
– Each system has an IP address unique to the network
– Compromised application can exploit address-based access control
• E.g., log in to remote machines that think you’re trusted

– Intrusion detection systems can get confused

7March 24, 2025 CS 419 © 2025 Paul Krzyzanowski

Application containment goals
• Enforce security – enable a broad set of access restrictions for an application

• High assurance – know it works

• Simple setup – minimize comprehension errors

• General purpose – works with any (most) applications

8March 24, 2025 CS 419 © 2025 Paul Krzyzanowski

Origins: chroot & BSD Jails

March 24, 2025 CS 419 © 2025 Paul Krzyzanowski 9

chroot: the granddaddy of containment
• Oldest containment mechanism (Unix v7 – 1982)
– chroot system call and chroot command

• Make a subtree of the file system the root for a process

• Anything outside of that subtree doesn’t exist

10March 24, 2025 CS 419 © 2025 Paul Krzyzanowski

bin dev etc home local

access cgi-bin html

/

httpd

chroot: the granddaddy of containment
• Only root can run chroot
chroot /local/httpd change the root
su httpuser change to a non-root user

• The root directory is now /local/httpd
– Anything above it is not accessible

11

bin dev etc home local

access cgi-bin html

/

httpd

“chroot jail”

March 24, 2025 CS 419 © 2025 Paul Krzyzanowski

Jailkits
• If programs within the jail need any utilities, they won’t be visible
– They’re outside the jail
– Need to be copied
– Ditto for shared libraries

• Jailkit (https://olivier.sessink.nl/jailkit/)
– Set of utilities that build a chroot jail
– Automatically assembles a collection of directories,

 files, & libraries
– Place the bare minimum set of supporting

 commands & libraries
• The fewer executables live in a jail, the less tools

 an attacker will have to use

12

https://linux.die.net/man/8/jailkit

March 24, 2025 CS 419 © 2025 Paul Krzyzanowski

jk_init create a jail using a
predefined configuration

jk_cp copy files or devices into a
jail

jk_chrootsh places a user into a
chroot jail upon login

jk_lsh limited shell that allows
the execution only of
commands in its config
file

…

Problems?
Does not limit network access
Does not protect network identity
Applications are still vulnerable to root compromise

Normal users are not allowed to run chroot because they can get admin privileges
– Create a jail directory mkdir /tmp/jail
– Create a link to the su command ln /bin/su /tmp/jail/su
– Copy or link libraries & shell …
– Create an /etc directory mkdir /tmp/jail/etc
– Create password file(s) with a create passwd, shadow files

known password for root
– Enter the jail chroot /tmp/jail
– Become root! su

su will validate against the password file in the jail!

March 24, 2025 CS 419 © 2025 Paul Krzyzanowski 13

Escaping a chroot jail
If you can become root in a jail, you have access to all system calls
You can create devices within your jail
– On Linux/Unix/BSD, all non-network devices have filenames
– Even memory has a filename (/dev/mem)

• Create a memory device (mknod system call)
– Change kernel data structures to remove your jail

• Create a disk device to access the raw disk (also the mknod system call)
– Mount it within your jail and you have access to the whole file system
– Get what you want, change the admin password, …

• Send signals to kill other processes
(doesn’t escape the jail but causes harm to others)

• Reboot the system
14March 24, 2025 CS 419 © 2025 Paul Krzyzanowski

chroot summary
• Only contains a process to a given subdirectory

• Imperfect solution
– Does not address access to system resources or the network

• Useless against root
– Root can easily escape

• Requires root access to set up
– Otherwise an attacker could get system-wide privileges

• Setting up a working environment takes some work (or use jailkit)

March 24, 2025 CS 419 © 2025 Paul Krzyzanowski 15

FreeBSD Jails (2000)
• Enhancement to chroot

• Run via
 jail jail_path hostname ip_addr command

• Main ideas:
– Confine an application, just like chroot
– Restrict what operations a process within a jail can perform, even if root

March 24, 2025 CS 419 © 2025 Paul Krzyzanowski 16

https://www.freebsd.org/doc/en/books/arch-handbook/jail.html

FreeBSD Jails: Differences from chroot
• Network restrictions
– Jail has its own IP address
– Can only bind to sockets with a specified IP address and authorized ports

• Processes can only communicate with processes inside the jail
– No visibility into unjailed processes

• Hierarchical: create jails within jails
• Root power is limited
– Cannot load kernel modules
– Ability to disallow certain system calls
• Raw sockets
• Device creation
• Modifying network configuration
• Mounting/unmounting file systems
• set_hostname

17

https://www.freebsd.org/doc/en/books/arch-handbook/jail.html

March 24, 2025 CS 419 © 2025 Paul Krzyzanowski

Problems
• Coarse policies
– All-or-nothing access to parts of the file system

• Does not prevent malicious apps from
– Accessing the network & other machines
– Trying to crash the host OS

• First true lightweight container model – but BSD Jails is a BSD-only solution

• Good for running things like DNS servers and web servers
– Not useful for user applications (like browsers) since these need access to things like user

files

18March 24, 2025 CS 419 © 2025 Paul Krzyzanowski

Linux Namespaces, Capabilities,
& Control Groups

March 24, 2025 CS 419 © 2025 Paul Krzyzanowski 19

Linux Namespaces
• chroot only changed the root of the filesystem namespace

• Linux provides control over the following namespaces:

20

See namespaces(7)

IPC System V IPC, POSIX message
queues

Objects created in an IPC namespace are visible to all other
processes only in that namespace

Network Network devices, stacks, ports Isolates IP protocol stacks, IP routing tables, firewalls,
socket port #s

Mount Mount points Mount points can be different in different processes – the
file system root can be set for a process, just like chroot

PID Process IDs Different PID namespaces can have the same PID – child
cannot see parent processes or other namespaces

User User & group IDs Per-namespace user/group IDs. You can be root in a
namespace with restricted privileges

UTS Hostname and NIS domain
name

sethostname and setdomainname affect only the
namespace

March 24, 2025 CS 419 © 2025 Paul Krzyzanowski

Linux Namespaces
Unlike chroot, unprivileged users can create namespaces

unshare() – system call that dissociates parts of the process execution context
– Examples
• Unshare IPC namespace, so it’s separate from other processes
• Unshare PID namespace, so the thread gets its own PID namespace for its children

clone() – system call to create a child process
– Like fork() but allows you to control what is shared with the parent
• Open files, root of the file system, current working directory, IPC namespace, network namespace,

memory, etc.

setns() – system call to associate a thread with a namespace
– A thread can associate itself with an existing namespace in /proc/[pid]/ns

21March 24, 2025 CS 419 © 2025 Paul Krzyzanowski

Linux Capabilities

How do we restrict privileged operations?
UNIX systems distinguished privileged vs. unprivileged processes

Privileged = UID 0 = root ⇒ kernel bypasses all permission checks

• With capabilities, privileges are assigned to a process and are not based on
whether it’s running as user ID 0 (root)

• A process running as root can be restricted to limited privileges
– E.g., no ability to set UID to root, no ability to mount filesystems

• A process running as non-root can be granted limited privileges
– E.g., the ability to send an ICMP packet (ping message)

22

N.B.: These capabilities have nothing to do with capability lists

March 24, 2025 CS 419 © 2025 Paul Krzyzanowski

Linux Capabilities
Assign subsets of privileges to programs
• Linux divides privileges into 38 distinct controls, including:

• These are per-thread attributes
– Can be set via the prctl system call

CAP_CHOWN make arbitrary changes to file owner and group IDs
CAP_DAC_OVERRIDE bypass read/write/execute checks
CAP_KILL bypass permission checks for sending signals
CAP_NET_ADMIN network management operations
CAP_NET_RAW allow RAW sockets
CAP_SETUID arbitrary manipulation of process UIDs
CAP_SYS_CHROOT enable chroot

March 24, 2025 CS 419 © 2025 Paul Krzyzanowski 23

Linux Capabilities Example
Unprivileged processes cannot bind to network port #s below 1024

With capabilities, we can allow the command my_program to do this without having it
run as root

 sudo setcap 'cap_net_bind_service=+ep' my_program

• cap_bind_service is the capability to bind to special ports

• +ep means:
– e: add the capability to the Effective set (what the process can currently do)
– p: add the capability to the Permitted set (the maximum capabilities the process is allowed

to enable)
– Without being in the permitted set, a capability can't be used, and without being in the

effective set, it isn't currently used.

March 24, 2025 CS 419 © 2025 Paul Krzyzanowski 24

Linux Control Groups (cgroups)
Limit the amount of resources a process tree can use
• CPU, memory, block device I/O, network
– E.g., a process tree can use at most 25% of the CPU
– Limit # of processes within a group
– Help with denial-of-service attacks

• Interface = cgroups file system: /sys/fs/cgroup
Namespaces + cgroups + capabilities
 = lightweight process virtualization
A group of processes can have the illusion that they are running on their
own Linux system, isolated from other processes in the system

March 24, 2025 CS 419 © 2025 Paul Krzyzanowski 25

Vulnerabilities
Bugs have been found
– User namespace: unprivileged user was able to get full privileges

But comprehension is a bigger problem
• Namespaces do not prohibit a process from making privileged system calls
– They control resources that those calls can manage
– The system will see only the resources that belong to that namespace

• Capabilities grant non-root users increased access to privileged operations
– Design concept: instead of dropping privileges from root, provide limited elevation to non-root users

• A real root process with its admin capability removed can restore it
– If it creates a user namespace, the capability is restored to the root user in that namespace – although

limited in function

March 24, 2025 CS 419 © 2025 Paul Krzyzanowski 26

Summary
• chroot

• FreeBSD Jails

• Linux namespaces, capabilities, and control groups
– Control groups
• Allow processes to be grouped together – control resources for the group

– Capabilities
• Limit what privileged operations a process & its children can perform

– Namespaces
• Restrict what a process can see & who it can interact with:

PIDs, User IDs, mount points, IPC, network

March 24, 2025 CS 419 © 2025 Paul Krzyzanowski 27

Containment via Containers

March 24, 2025 CS 419 © 2025 Paul Krzyzanowski 28

Motivation for containers
• Installing software packages can be a pain
– Dependencies

• Running multiple packages on one system can be a pain
– Updating a package can update a library or utility another uses
• Causing something else to break

– No isolation among packages
• Something goes awry in one service impacts another

• Migrating services to another system is a pain
– Re-deploy & reconfigure

29March 24, 2025 CS 419 © 2025 Paul Krzyzanowski

How did we address these problems?
• Sysadmin effort
– Service downtime, frustration, redeployment

• Run every service on a separate system
– Mail server, database, web server, app server, …
– Expensive! … and overkill

• Deploy virtual machines
– Kind of like running services on separate systems
– Each service gets its own instance of the OS and all supporting software
– Heavyweight approach
• Time share between operating systems

30March 24, 2025 CS 419 © 2025 Paul Krzyzanowski

What are containers?
Containers: created to package & distribute software
– Focus on services, not end-user apps
– Software systems usually require a bunch of stuff:
• Libraries, multiple applications, configuration tools, …

– Container = image containing the application environment
• Can be installed and run on any system

Key insight:
Encapsulate software, configuration, & dependencies into one package

31March 24, 2025 CS 419 © 2025 Paul Krzyzanowski

A container feels like a virtual machine
• It gives you the illusion of separate
– Set of apps
– Process space
– Network interface
– Network configuration
– Libraries, …

• But limited root powers

• And …
– All containers on a system share the same OS & kernel modules

March 24, 2025 CS 419 © 2025 Paul Krzyzanowski 32

How are containers built?
• Control groups
– Meters & limits on resource use
• Memory, disk (I/O bandwidth), CPU (set %), network (traffic priority)

• Namespaces
– Isolates what processes can see & access
– Process IDs, host name, mounted file systems, users, IPC
– Network interface, routing tables, sockets

• Capabilities
– Restrict privileges on a per-process basis

• Copy on write file system
– Instantly create new containers without copying the entire package
– Storage system tracks changes

• AppArmor
– Pathname-based mandatory access controls
– Confines programs to a set of listed files & capabilities

33March 24, 2025 CS 419 © 2025 Paul Krzyzanowski

Docker
• First super-popular container
– LXC (Linux Containers) were the first

• Designed to provide Platform-as-a-Service capabilities
– Combined Linux cgroups & namespaces into a single easy-to-use package
– Enabled applications to be deployed consistently anywhere as one package

• Docker Image
– Package containing applications & supporting libraries & files
– Can be deployed on many environments

• Make deployment easy
– Git-like commands: docker push, docker commit, ...
– Make it easy to reuse image and track changes
– Download updates instead of entire images

• Keep Docker images immutable (read-only)
– Run containers by creating a writable layer to temporarily store runtime changes

March 24, 2025 CS 419 © 2025 Paul Krzyzanowski 34

Later Docker additions
• Docker Hub: cloud-based repository for docker images

• Docker Swarm: deploy multiple containers as one abstraction

35March 24, 2025 CS 419 © 2025 Paul Krzyzanowski

Not Just Linux
Microsoft introduced Containers in Windows Server 2016 with support for
Docker

• Windows Server Containers
– Assumes trusted applications
– Misconfiguration or design flaws may permit an app to escape its container

• Hyper-V Containers
– Each has its own copy of the Windows kernel & dedicated memory
– Same level of isolation as in virtual machines
– Essentially a VM that can be coordinated via Docker
– Less efficient in startup time & more resource intensive
– Designed for hostile applications to run on the same host

March 24, 2025 CS 419 © 2025 Paul Krzyzanowski 36

Container Orchestration
• We wanted to manage containers across systems

• Multiple efforts
– Marathon/Apache Mesos (2014), Kubernetes (2015), Nomad, Docker Swarm, …

Google designed Kubernetes for container orchestration
– Handle multiple containers and start each one at the right time
– Handle storage
– Deal with hardware and container failure: automatic start & migration
– Integrates with the Docker engine
– Scale rapidly by adding/removing containers based on demand (e.g., Pokemon Go)
– Open source

37March 24, 2025 CS 419 © 2025 Paul Krzyzanowski

Why were containers created?
Primary goal was software distribution, not security

• Makes moving & running a collection of software simple
– E.g., Docker Container Format

• Everything at Google is deployed & runs in a container
– Over 2 billion containers started per week (2014)
– lmctfy (“Let Me Contain That For You”)
• Google’s old container tool – similar to Docker and LXC (Linux Containers)

– Then Kubernetes to manage multiple containers & their storage

March 24, 2025 CS 419 © 2025 Paul Krzyzanowski 38

But containers have security benefits
• Containers use namespaces, control groups, & capabilities
– Restricted capabilities by default
– Isolation among containers

• Containers are usually minimal and application-specific
– Just a few processes
– Minimal software & libraries
– Fewer things to attack

• They separate policy from enforcement
• Execution environments are reproducible
– Easy to inspect how a container is defined
– Can be tested in multiple environments

• Watchdog-based re-starting: helps with availability

• Containers help with comprehension errors
– Decent default security without learning much
– Also ability to enable other security modules

39March 24, 2025 CS 419 © 2025 Paul Krzyzanowski

Security Concerns
• Kernel exploits
– All containers share the same kernel

• Privileges & escaping the container
– Privileged containers map uid 0 (root) to the host’s uid 0 (root)

Prevention of escape is based on MAC (apparmor), capabilities & namespace configuration
– Unprivileged containers map uid 0 to an unprivileged user outside the container

No possibility of root escalation

• Users in multiple containers may share the same real ID
– If users map to the same parent ID, they share all the limits of that ID
– A user in one container can perform a DoS attack on another user

March 24, 2025 CS 419 © 2025 Paul Krzyzanowski 40

Security Concerns
• Denial of service attacks
– Untrusted users may launch attacks within containers
– If one container can monopolize a resource, others suffer

• Network spoofing
– A process in a container may be allowed to transmit raw ethernet packets and spoof any

service

• Origin integrity
– Where is the container from and has it been tampered?

March 24, 2025 CS 419 © 2025 Paul Krzyzanowski 41

Containment via Virtual Machines

March 24, 2025 CS 419 © 2025 Paul Krzyzanowski 42

Virtual CPUs (sort of)
What time-sharing operating systems give us

• Each process feels like it has its own CPU & memory
– But cannot execute privileged CPU instructions

(e.g., modify the MMU or the interval timer, halt the processor, access I/O)

• Illusion created by OS preemption, scheduler, and MMU

• User software has to “ask the OS” to do system-related functions

• Containers (and BSD Jails) give us operating system-level virtualization
– A group of processes may be isolated from others, with their own view of the filesystem,

network stack, and restricted admin access

March 24, 2025 CS 419 © 2025 Paul Krzyzanowski 43

Process Virtual Machines
CPU interpreter running as a process
• Pseudo-machine with interpreted instructions
– 1966: O-code for BCPL
– 1973: P-code for Pascal
– 1991: Python Virtual Machine (PVM)
– 1995: Java Virtual Machine (JIT compilation added)
– 2002: Microsoft .NET CLR (pre-compilation)
– 2003: QEMU (dynamic binary translation)
– 2008: Dalvik VM for Android
– 2014: Android Runtime (ART) – ahead of time compilation

• Advantage: run anywhere, sandboxing capability
• No ability to pretend to access the system hardware
– Just function calls to access system functions

44March 24, 2025 CS 419 © 2025 Paul Krzyzanowski

Machine Virtualization
• Normally all hardware and I/O managed by one operating system

• Machine virtualization
– Abstract (virtualize) control of hardware and I/O from the OS
– Partition a physical computer to act like several computers
• Manipulate memory mappings
• Set system timers
• Access devices

– Migrate an entire OS & its applications from one
computer to another

• 1972: IBM System 370
– Allow kernel developers to share a computer

March 24, 2025 CS 419 © 2025 Paul Krzyzanowski 45

Why are VMs popular?
• Wasteful to dedicate a computer to each service
– Mail, print server, web server, file server, database

• If these services run on a separate computer
– Configure the OS just for that service
– Attacks and privilege escalation won’t hurt other services

46March 24, 2025 CS 419 © 2025 Paul Krzyzanowski

The Hypervisor
Hypervisor: Program in charge of virtualization

– Aka Virtual Machine Monitor
– Provides the illusion that the OS has full access to the hardware
– Arbitrates access to physical resources
– Presents a set of virtual device interfaces to each host

47March 24, 2025 CS 419 © 2025 Paul Krzyzanowski

Machine Virtualization
An OS is just a bunch of code!

• Privileged vs. unprivileged instructions
– If regular applications execute privileged instructions, they trap
– Operating systems are allowed to execute privileged instructions

• With machine virtualization
– We deprivilege the operating system
– The VMM runs at a higher privilege level than the OS

• The VMM catches the trap
– If it turns out that the attempt to execute the privileged instruction occurred in the kernel

code, the hypervisor (VMM) emulates the instruction
– Trap & Emulate

March 24, 2025 CS 419 © 2025 Paul Krzyzanowski 48

Hypervisor
Application or Guest OS runs until:
– Privileged instruction traps
– System interrupts
– Exceptions (page faults)
– Explicit call: VMCALL (Intel) or VMMCALL (AMD)

March 24, 2025 CS 419 © 2025 Paul Krzyzanowski 49

Hypervisor (Virtual Machine Monitor)

Operating System & Applications

MMU emulation
CPU instruction

or device
emulation

I/O emulation

Page
Fault

Instruction
Fault

Virtual
IRQ

Unprivileged

Privileged

Hardware support for virtualization
Root mode (Intel example)
– Layer of execution more privileged than the kernel

51March 24, 2025 CS 419 © 2025 Paul Krzyzanowski

apps

Guest OS

VMM

hardware

Non-root mode
privilege levels

VMX Root
privilege level

OS traps to VMM
RING 0

RING 1

RING 2

RING 3apps

Guest OS RING 0

RING 1

RING 2

RING 3

Without virtualization

sy
sc

al
l

Guest mode
privilege level

VMM performs
emulation of request

Architectural Support
• Intel Virtual Technology, AMD-V

• ARM Virtualization Extensions
– New mode (HYP) and new privilege level (non-secure privilege level 2)

Guest mode execution: can run privileged instructions directly
– E.g., a system call does not need to go to the VM
– Certain privileged instructions are intercepted as VM exits to the VMM
– Exceptions, faults, and external interrupts are intercepted as VM exits
– Virtualized exceptions/faults are injected as VM entries

52March 24, 2025 CS 419 © 2025 Paul Krzyzanowski

CPU Architectural Support
• Setup
– Turn VM support on/off (usually in BIOS)
– Configure what controls VM exits
– Processor state: saved & restored in guest & host areas

• VM Entry: go from hypervisor to VM
– Load state from the guest OS area

• VM Exit
– VM-exit: like a trap – information contains the cause of the exit
– Processor state saved in guest area
– Processor state loaded from host area

53March 24, 2025 CS 419 © 2025 Paul Krzyzanowski

Two Approaches to Running VMs

1. Native VM (hypervisor model)

2. Hosted VM

54March 24, 2025 CS 419 © 2025 Paul Krzyzanowski

Native Virtual Machine

Native VM (or Type 1 or Bare Metal)
– No primary OS
– Hypervisor is in charge of access to the devices and scheduling
– OS runs in “kernel mode” but does not run with full privileges

55

Example:
VMware ESX

Applications

OS

Virtual Machine

Virtual Machine Monitor (Hypervisor)

Applications

OS

Virtual Machine

Applications

OS

Virtual Machine

Physical Machine

Device driver

March 24, 2025 CS 419 © 2025 Paul Krzyzanowski

Hosted Virtual Machine
Hosted VM
– VMM runs without special privileges
– Primary OS responsible for access to the raw machine
• Lets you use all the drivers available for that primary OS

– Guest operating systems run under a VMM
– VMM invoked by host OS
• Serves as a proxy to the host OS for access to devices

56

Example:
VMware

Workstation

Applications

Host OS VM Driver

Applications

Guest OS

VMM

Physical Machine

Device driver

Device emulation

March 24, 2025 CS 419 © 2025 Paul Krzyzanowski

Security Benefits of Using Virtual Machines
Virtual machines isolate multiple operating systems

• Attacks & malware can target the guest OS & apps

• Malware cannot escape from the infected guest OS
– If a guest OS is compromised or fails
• the host and other OSes are unaffected
• The ability of other OSes to access resources is unaffected
• The performance of other OSes is unaffected

– Cannot infect the host OS
– Cannot infect the VMM
– Cannot infect other VMs on the same computer

57March 24, 2025 CS 419 © 2025 Paul Krzyzanowski

Security Benefits of Using Virtual Machines
• Recovery from snapshots
– Easy to revert to a previous version of the system

• Easy to replicate virtual machines
– Treat the system as a virtual “appliance”
– If it gets infected with malware, just start another appliance

• Operate as a test environment
– Great for testing suspicious software
– See what files have been modified
– Compare before/after states
– Restore to pre-installed state

58March 24, 2025 CS 419 © 2025 Paul Krzyzanowski

Risks
• Same as with introducing other new computers
– Poorly configured access policies
– Untrusted or unpatched software
– "Default" system installations (e.g., full Linux distributions)

• An attacker may enable virtualization
… and install a new virtual machine in a computing environment
– It acts like a real computer
– Private file system
– Undetected by other VMs
– Admins might not notice one more system on the network

March 24, 2025 CS 419 © 2025 Paul Krzyzanowski 59

Risks: Covert Channels

60

Classified VM Public VM

Classified
Data Malware Malware

Listener

VMM

1. Malware can perform CPU-intensive task at specific times
2. Listener can do CPU-intensive tasks and measure completion times
This allows malware to send a bit pattern:
 malware working = 1 = slowdown on listener
Depends on scheduler but there are other mechanisms too… like memory access

March 24, 2025 CS 419 © 2025 Paul Krzyzanowski

Covert channel
– Secret communication channel between

components that are not allowed to
communicate

Side channel attack
– Communication using some aspect of a

system's behavior

Containment via Sandboxing:
Restricting what applications can do

March 24, 2025 CS 419 © 2025 Paul Krzyzanowski 61

Running untrusted applications
• Jail / container / VM solutions
– Great for running services

• Not really useful for applications
– These need to be launched by users & interact with their environment

March 24, 2025 CS 419 © 2025 Paul Krzyzanowski 62

The sandbox

• A restricted area where code can play in

• Allow users to download and execute untrusted applications with limited risk

• Restrictions can be placed on what an application is allowed to do in its sandbox

• Untrusted applications can execute in a trusted environment

Containers are a form of sandboxing… but we want to focus on
giving users the ability to run apps & restrict what those apps can do

sand•box, ’san(d)-"bäks, noun. Date: 1688
: a box or receptacle containing loose sand: as a: a
shaker for sprinkling sand on wet ink b: a box that
contains sand for children to play in

63March 24, 2025 CS 419 © 2025 Paul Krzyzanowski

Application sandboxing
via system call hooking &
user-level validation

64March 24, 2025 CS 419 © 2025 Paul Krzyzanowski

System Call Interposition
System calls interface with system resources

An application must use system calls to access any resources, initiate
attacks … and cause any damage
– Modify/access files/devices:

 creat, open, read, write, unlink, chown, chgrp, chmod, …
– Access the network:

 socket, bind, connect, send, recv

• Sandboxing via system call interposition
– Intercept, inspect, and approve an app’s system calls

March 24, 2025 CS 419 © 2025 Paul Krzyzanowski 65

Example: Janus
• Policy file defines allowable files and network operations

• Dedicated policy per process
– Policy engine reads policy file
– Forks
– Child process execs application
– All accesses to resources are screened by Janus

• System call entry points contain hooks
– Redirect control to mod_Janus
– Module tells the user-level Janus process that a system call has been requested
• Process is blocked
• Janus process queries the module for details about the call
• Makes a policy decision

66March 24, 2025 CS 419 © 2025 Paul Krzyzanowski

Example: Janus
App sandboxing tool implemented as a loadable kernel module

User space
Kernel space

Application Environment

Process
Process

Process

System call entry
mod_janus

Janus

Policy
Engine

open(“file.txt”) result

Kernel

result
Deny

open(“file.txt”)

Allow
open(“file.txt”)

op
en

(“f
ile

.tx
t”

)

Al
lo

w
 /

D
en

y

Policy
File

March 24, 2025 CS 419 © 2025 Paul Krzyzanowski 67

Implementation Challenge
Janus must mirror the state of the operating system!

• If process forks, the Janus monitor must fork
• Keep track of the network protocol
– socket, bind, connect, read/write, shutdown

• Does not know if certain operations failed
• Gets tricky if file descriptors are duplicated
• Remember filename parsing?
– We have to figure out the whole dot-dot (..) thing!
– Have to keep track of changes to the current directory too

• App namespace can change if the process does a chroot
• What if file descriptors are passed via Unix domain sockets?
– sendmsg, recvmsg

• Race conditions: TOCTTOU

March 24, 2025 CS 419 © 2025 Paul Krzyzanowski 68

Application sandboxing
via integrated OS support

69March 24, 2025 CS 419 © 2025 Paul Krzyzanowski

Linux seccomp-BPF
seccomp-BPF = SECure COMPuting with Berkeley Packet Filters

• Linux capabilities
– Dealt with granting elevated privileges to processes
– No ability to restrict access to regular files

• Linux namespaces
– Limit access to mount points, processes

• chroot – no ability to be selective about files

seccomp-BPF allows the user to attach a system call filter to a process and its
descendants
– Enumerate allowable system calls and their parameters (but not pointer values)

• Used extensively in Android and Firefox
70March 24, 2025 CS 419 © 2025 Paul Krzyzanowski

Linux seccomp-BPF
• Uses the Berkeley Packet Filter (BPF) interpreter
– seccomp sends “packets” that represent system calls to BPF

• BPF allows us to define rules to inspect each request and take an action
– Kill the task
– Disallow & send SIGSYS
– Return an error
– Allow

• Turned on via the prctl() system call – process control

Seccomp is not a complete sandbox but is a tool for building sandboxes
– Needs to work with other components: Namespaces, capabilities, control groups
– Potential for comprehension problems – BPF is a very low level interface

71March 24, 2025 CS 419 © 2025 Paul Krzyzanowski

Linux AppArmor (Application Armor)
Linux Security Module for Mandatory Access Control via path-based policies

• Goal:
– Confine programs by defining files & capabilities they can access, regardless of user

• Human-readable policy profiles define
– File read/write/execute access by name
– Network usage
– Use of POSIX capabilities
– Execution of other programs
– Access to specific kernel interfaces (like ptrace, /proc)

AppArmor operates at the LSM hook framework in the kernel, checking
operations at strategic points in the kernel – not at the system call entry point

March 24, 2025 CS 419 © 2025 Paul Krzyzanowski 72

seccomp vs. AppArmor
Docker & other containers use AppArmor to restrict file access

• Seccomp: filters system calls
– Allow system calls to be filtered
– Specify which system calls are allowed & place restrictions on their parameters
– Reduces attack surface of the kernel

• AppArmor: controls access to objects
– Installed as a Linux Security Module
– Allows user to blacklist & whitelist a program's access to objects (files, networks)

• Capabilities: grants specific privileged access
– Allows granting only select elevated privileges to applications

March 24, 2025 CS 419 © 2025 Paul Krzyzanowski 73

Apple Sandbox
Create a list of rules that is consulted to see if an operation is permitted

• Components:
– Set of libraries for initializing/configuring policies per process
– Server for kernel logging
– Kernel extension using the TrustedBSD API for enforcing individual policies
– Kernel support extension providing regular expression matching for policy enforcement

• sandbox-exec command & sandbox_init function
– sandbox-exec: calls sandbox_init() before fork() and exec()
– sandbox_init(kSBXProfileNoWrite, SANDBOX_NAMED, errbuf);

March 24, 2025 CS 419 © 2025 Paul Krzyzanowski 74

Apple sandbox setup & operation
sandbox_init:
– Convert human-readable policies into a binary format for the kernel
– Policies passed to the kernel to the TrustedBSD subsystem
– TrustedBSD subsystem passes rules to the kernel extension
– Kernel extension installs sandbox profile rules for the current process

Operation: intercept system calls
– System calls hooked by the TrustedBSD layer will pass through Sandbox.kext for

policy enforcement
– The extension will consult the list of rules for the current process
– Some rules require pattern matching (e.g., filename pattern)

March 24, 2025 CS 419 © 2025 Paul Krzyzanowski 75

Apple sandbox policies
Some pre-written profiles:
– Prohibit TCP/IP networking
– Prohibit all networking
– Prohibit file system writes
– Restrict writes to specific locations (e.g., /var/tmp)
– Perform only computation: minimal OS services

76March 24, 2025 CS 419 © 2025 Paul Krzyzanowski

Browser-based application sandboxing

77March 24, 2025 CS 419 © 2025 Paul Krzyzanowski

Web plug-ins
• External binaries that add capabilities to a browser

• Loaded when content for them is embedded in a page

• Examples: Adobe Flash, Adobe Reader, Java

Challenge:
How do you keep plugins from doing bad things?

March 24, 2025 CS 419 © 2025 Paul Krzyzanowski 78

Chromium Native Client (NaCl)
• Browser plug-in designed for
– Safe execution of platform-independent untrusted native code in a browser
– Compute-intensive applications
– Interactive applications that use resources of a client

• Two types of code: trusted & untrusted
– Trusted code does not run in a sandbox
– Untrusted code has to run in a sandbox

• Untrusted native code
– Built using NaCl SDK or any compiler that follows alignment rules and instruction

restrictions
• GNU-based toolchain, custom versions of gcc/binutils/gdb, libraries
• Support for ARM 32-bit, x86-32, x86-64, MIPS32
• Pepper Plugin API (PPAPI): portability for 2D/3D graphics & audio

– NaCl statically verifies the code to check for use of privileged instructions

March 24, 2025 CS 419 © 2025 Paul Krzyzanowski 79

Chromium Native Client (NaCl)
Two sandboxes
• Outer sandbox: restricts capabilities using system call interposition
• Inner sandbox: uses x86 segmentation to isolate memory among apps
– Uses static analysis to detect security defects in code; disallow self-modifying code

March 24, 2025 CS 419 © 2025 Paul Krzyzanowski 80

Browser

Untrusted program
Untrusted program

NaCl runtime

IPC NaCl sandbox syscall

Operating System

Native syscall Chrome sandbox syscall

INNER SANDBOX
OUTER SANDBOX

Portability
• Portable Native Client (PNaCl)
– Architecture independent
– Developers compile code once to run on any website & architecture
– Compiled to a portable executable (pexe) file
– Chrome translates pexe into native code prior to exectution

81March 24, 2025 CS 419 © 2025 Paul Krzyzanowski

Java sandbox

82March 24, 2025 CS 419 © 2025 Paul Krzyzanowski

Java Language
• Type-safe & easy to use
– Memory management and range checking

• Designed for an interpreted environment: JVM

• No direct access to system calls

83March 24, 2025 CS 419 © 2025 Paul Krzyzanowski

Java Sandbox
1. Bytecode verifier: verifies Java bytecode before it is run

• Disallow pointer arithmetic
• Automatic garbage collection
• Array bounds checking
• Null reference checking

2. Class loader: determines if an object is allowed to add classes
• Ensures key parts of the runtime environment are not overwritten
• Runtime data areas (stacks, bytecodes, heap) are randomly laid out

3. Security manager: enforces protection domain
• Defines the boundaries of the sandbox (file, net, native, etc. access)
• Consulted before any access to a resource is allowed

84March 24, 2025 CS 419 © 2025 Paul Krzyzanowski

JVM Security
• Complex process

• 20+ years of bugs … hope the big ones have been found!

• Buffer overflows found in the C support library
– We can hope they have all been found & fixed

• In general, Java is pretty secure
– Array bounds checking, memory management
– Security manager with access controls
– But use of native methods allows you to bypass security checks

85March 24, 2025 CS 419 © 2025 Paul Krzyzanowski

Solving the problem
• Access controls don’t stop the problem

• Privilege escalation limiting mechanisms work better
– Containment mechanisms (like containers) work well for servers - but not for end-user software

• Running software in a sandbox is great
– Mobile phones rely on this – often too restrictive for computers
– You must trust that users won’t be convinced to grant the wrong access rights

• Attacks that exploit human behavior are hard to prevent
– We’re dealing with human nature
– We’re used to accepting a pop-up message and entering a password
– Better detection in browsers & mail clients helps … but risks junking legitimate content

• Simple software – without automatically-run macros is also good
– A simple text editor vs. MS-Word … but isn’t acceptable to a lot of users

It’s still a big problem

March 24, 2025 CS 419 © 2025 Paul Krzyzanowski 86

The End

March 24, 2025 87CS 419 © 2025 Paul Krzyzanowski

