
This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

CS 419: Computer Security

Paul Krzyzanowski

Week 6: Part 1
 Access Control

© 2025 Paul Krzyzanowski. No part of this
content may be reproduced or reposted in
whole or in part in any manner without the
permission of the copyright owner.

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Protection is essential to security
• Protection
– The mechanism that provides controlled access of resources to processes
– A protection mechanism enforces security policies

• Protection includes:
– User privileges: access rights to files, devices, and other system resources
– Resource scheduling & allocation
• Process scheduling & memory allocation – Which processes get priority?

– Quotas (sometimes) – set limits on disk space, CPU, network, memory, …

• And relies on
– Mechanisms for user accounts & user authentication – identify who we’re dealing with
– Policies – defining who should be allowed do what
– Auditing: generate audit logs for certain events

March 3, 2025 CS 419 © 2025 Paul Krzyzanowski 2

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Co-located resources
• Earliest computers – 1945+
– Single-user batch processing – no shared resources
– No need for access control – access control was physical

• Then … batch processing … but no shared storage – 1950s
– Per-process allocation of tape drives, printers, punched card machines, …

• Later … shared storage & timesharing systems – 1960s-now
– Multiple users share the same computer
– User accounts & access control important

• Even later … PCs – 1974 to now
– Back to single-user systems (mostly), although with a multi-user OS
– … but software & media became less trusted by the 1990s

• Now: networked PCs + mobile devices + IoT devices + …
– Shared access: cloud computing, file servers, university systems
– Even more need to enforce access control

March 3, 2025 CS 419 © 2025 Paul Krzyzanowski 3

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Access control
• Ensure that authorized users can do what they are permitted to do …

and no more

• Real world
– Keys, badges, guards, policies

• Computer world
– Hardware
– Operating systems
– Web servers, databases & other multi-access software
– Policies

March 3, 2025 CS 419 © 2025 Paul Krzyzanowski 4

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Goals
• The OS gives us access to resources on a computer:
– CPU
– Memory
– Files & devices
– Network

• We need to:
– Protect the operating system from applications
– Protect applications from each other
– Allow the OS to stay in control
– Restrict what users can do

March 3, 2025 CS 419 © 2025 Paul Krzyzanowski 5

The OS and hardware are the
fundamental parts of the Trusted Computing Base (TCB)

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Regaining control: hardware timer
The operating system kernel requests timer interrupts

• One of several timer devices on Intel architectures:
– High Precision Event Timer (HPET)
– or Advanced Programmable Interrupt Controller (APIC timer, one per CPU)

• Most current Intel Linux & Windows systems use the APIC timer
– The kernel sets a periodic interrupt: HZ=250, 300, or 1000 Hz to trigger the scheduler
– In tickless kernels (CONFIG_NO_HZ_FULL), timers fire only when needed
• The kernel calculates the next relevant event - interrupts are eliminated when the system is idle
• Microsoft Windows also uses tickless scheduling (since Vista)
• macOS uses a hybrid scheduler, mostly event-based

Applications cannot disable these interrupts
This ensures that the OS can always regain control

March 3, 2025 CS 419 © 2025 Paul Krzyzanowski 6

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Processes
Timer interrupts ensure OS can take control periodically

OS Process Scheduler
– Decides whether a process had enough CPU time, and it is time for another

process to run
– Prioritizes threads
• Based on user, user-defined priorities, interactivity, deadlines, “fairness”
• One process should not adversely affect others

– Avoid starvation: ensure all processes will get a chance to run
• This would be an availability attack

7March 3, 2025 CS 419 © 2025 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Memory Protection: Memory Management Unit
• All modern CPUs have a Memory Management Unit (MMU)

• OS provides each process with virtual memory

• Gives each process the illusion that it has the entire address space

• One process cannot see another process’ address space

• Enforce memory access rights
– Read-only (code)
– Read-write (program’s data)
– Execute (code)
– Unmapped

March 3, 2025 CS 419 © 2025 Paul Krzyzanowski 8

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Page translation

Page number, p Displacement (offset), d

CPU

Logical
address

Physical
address

p d f d
f = page_table[p]

f
f
f
f
f
f
f

Physical memoryPage table

f = page_table[p]

Kernel stores one page
table per process

Virtual memory address

9March 3, 2025 CS 419 © 2025 Paul Krzyzanowski

What’s actually
referenced

What’s used by the process

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Logical vs. physical views of memory

Page 3

Page 1

Page 0

Page 0

Page 27

6

5

4

3

2

1

0

Frame #

page 0

page 1

page 2

Page 3

4

2

7

-

Page Table 0

Physical Memory

0

1

2

3
Page 3

not
mapped

Page #

10March 3, 2025 CS 419 © 2025 Paul Krzyzanowski

page 0

page 1

page 2

Page 3

Logical Memory – Process 1

Page #

Logical Memory – Process 0

6

–

–

1

Page Table 1

0

1

2

3

Each process feels that it can access any memory
but the same addresses across different processes
will map to different physical locations.

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Kernel mode = privileged,
system, or supervisor mode
–Access restricted regions of memory
–Modify the memory management unit

by changing the page table register
and memory map (page tables)
–Set hardware timers
–Define interrupt vectors
–Halt the processor
–Etc.

Getting into kernel mode
– Trap: explicit instruction
• Intel architecture: INT instruction

(interrupt)
• ARM architecture: SWI instruction

(software interrupt)
• System call instructions (SYSCALL)

– Violation (e.g., access unmapped
memory, illegal instruction)

– Hardware interrupt (e.g., receipt of
network data or timer)

March 3, 2025 CS 419 © 2024 Paul Krzyzanowski 11

User & kernel mode

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Protection Rings
• All modern operating systems support two modes of operation: user & kernel

• Multics defined a ring structure with 6 different privilege levels – Intel inherited this
– Each ring is protected from higher-numbered rings
– Special call (call gates) to cross rings: jump to predefined locations
– Most of the OS did not run in ring 0

• Intel x86, IA-32 and IA-64 support 4 rings

• Today’s OSes only use
– Ring 0: kernel
– Ring 3: user

• Additional protection levels
– Ring -1: Hypervisor (virtual machine monitor)
– Ring -2: System Management Mode (SMM)
• Low-level, high-priority tasks like power management, thermal monitoring

March 3, 2025 CS 419 © 2025 Paul Krzyzanowski 12

https://en.wikipedia.org/wiki/Protection_ring

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Subjects, Principals, and Objects
Subject: the thing that needs to access resources

Principal: unique identity for a user
• Subjects may have multiple identities and be associated with a set of principals

User: a human (generally)

Object: the resource the subject may access
– Typically, files and devices – they do not perform operations

Subjects access objects: they perform actions on objects

Access control
– Define what operations subjects can perform on objects

Most of today’s operating systems control who can do what to each object
 (access permissions are associated with each object)

13March 3, 2025 CS 419 © 2025 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

User authentication
Must be done before we can do access control

Establish user identity – determine the subject
– Operating system privileges are granted based on user identity

Steps
1. Get user credentials (e.g., name, password)
2. Authenticate user by validating the credentials

– Get user ID(s), group ID(s)
3. Control access: grant access to resources based on user/group IDs & policies

14March 3, 2025 CS 419 © 2025 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Domains of Protection

March 3, 2025 CS 419 © 2025 Paul Krzyzanowski 15

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Domains of protection
Subjects (users running processes) interact with objects
– Process runs with the authority of the subject (user)
– Objects include:

 hardware (CPU, memory, I/O devices)
 software: files, processes, semaphores, messages, signals

A process should be allowed to access only objects that it is
authorized to access
– A process operates in a protection domain
– It’s part of the context of the process
– Protection domain defines the objects the process may access and how it may

access them

16March 3, 2025 CS 419 © 2025 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Modeling Protection: Access Control Matrix
Rows: domains
 (subjects or groups of subjects)

Columns: objects

Each entry in the matrix represents an
access right of a domain on an object

Objects

do
m

ai
ns

 o
f p

ro
te

ct
io

n F0 F1 Printer

D0 read read-
write

print

D1 read-write-
execute

read

D2 read-
execute

D3 read print

D4 print

17

An Access Control Matrix is the primary abstraction for protection in computer security

March 3, 2025 CS 419 © 2025 Paul Krzyzanowski
Su

bj
ec

ts

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

We may need some more controls
• Domain transfers
– Allow a process to run under another domain’s permissions

• Copy rights
– Allow a user to grant certain access rights for an object

• Owner rights
– Identify a subject as the owner of an object
– Can change access rights on that object for any domain

• Domain control
– A process running in one domain can change any access rights for another domain

March 3, 2025 CS 419 © 2025 Paul Krzyzanowski 18

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Access Control Matrix: Domain Transfers
Switching from one domain to another is a configurable policy

objects
do

m
ai

ns
 o

f p
ro

te
ct

io
n

F0 F1 Printer D0 D1 D2 D3 D4

D0 read read-
write

print – switch switch

D1 read-
write-

execute

read –

D2 read-
execute

switch –

D3 read print

D4 print

19

A process in D0 can switch
to running in domain D1

March 3, 2025 CS 419 © 2025 Paul Krzyzanowski

Su
bj

ec
ts

Domain transfers
Allow a process to run under another domain’s permissions

Why? Log a user in – how would you run the first user’s process?

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Access Control Matrix: Delegation of Access
Copy rights: allow a user to grant certain rights to others
– Copy a specific access right on an object from one domain to another

do
m

ai
ns

 o
f p

ro
te

ct
io

n F0 F1 Printer D0 D1 D2 D3 D4

D0 read read-
write

print – switch swtich

D1 read-
write-

execute

read* –

D2 read-
execute

swtich –

D3 read print

D4 print

A process executing in
D1 can give a read right
on F1 to another domain

20

objects

March 3, 2025 CS 419 © 2025 Paul Krzyzanowski

Su
bj

ec
ts

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Access Control Matrix: Object Owner
Owner: allow new rights to be added or removed

do
m

ai
ns

 o
f p

ro
te

ct
io

n F0 F1 Printer D0 D1 D2 D3 D4

D0 read
owner

read-
write

print – switch swtich

D1 read-
write-

execute

read* –

D2 read-
execute

swtich –

D3 read print

D4 print

A process executing in
D0 owns F0, so it can
give a read right on F0
to domain D3 and
remove the execute
right from D1

objects

21March 3, 2025 CS 419 © 2025 Paul Krzyzanowski

Su
bj

ec
ts

Identify a subject as the owner of an object
Can change access rights on that object for any domain (column)

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Access Matrix: Domain Control
• A process running in one domain can change any access rights for another domain

• Change entries in a row (all objects)

March 3, 2025 CS 419 © 2025 Paul Krzyzanowski 22

do
m

ai
ns

 o
f p

ro
te

ct
io

n F0 F1 Printer D0 D1 D2 D3 D4

D0 read
owner

read-
write

print – switch switch

D1 read-
write-

execute

read* – control

D2 read-
execute

switch –

D3 read print

D4 print

A process executing in
D1 can modify any
rights in domain D4

objects

Su
bj

ec
ts

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

This gets messy!
• An access control matrix does not address everything we may want
• Processes execute with the rights of the user (domain)
– But sometimes they need extra privileges
• Read configuration files
• Read/write from/to a restricted device
• Append to a queue

• We don’t want the user to be able to access these objects
– Adding domains to the row of objects is not sufficient
– We may need a 3-D access control matrix: (subjects, objects, processes)

• This gets messy!
– One solution is to give an executable file a temporary domain transfer
• Assumption is this is a trusted application that can access these resources

– When run, it assumes the privileges of another domain

March 3, 2025 CS 419 © 2025 Paul Krzyzanowski 23

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Implementing an access matrix
A single table to store an access matrix is impractical

• Big size: # domains (users) × # objects (files)
• Objects may come and go frequently
• Lookup needs to be efficient

March 3, 2025 CS 419 © 2025 Paul Krzyzanowski 24

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

F0 F1 F2 F3 F3 Printer

D0 read
owner

read-
write

read-
execute

read print

D1 read-
write-

execute

read read-
execute

read write

D2 read-
execute

read-
execute

write

D3 read read-
execute

print

D4 read-
execute

write print

Implementing an access matrix
Access Control List
– Associate a column of the table with each object

do
m

ai
ns

 o
f p

ro
te

ct
io

n
objects

ACL for file F0

25March 3, 2025 CS 419 © 2025 Paul Krzyzanowski

Su
bj

ec
ts

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

F0 F1 F2 F3 F3 Printer

D0 read
owner

read-
write

read-
execute

read print

D1 read-
write-

execute

read read-
execute

read write

D2 read-
execute

read-
execute

write

D3 read read-
execute

print

D4 read-
execute

write print

Implementing an access matrix
Capability List
– Associate a row of the table with each domain

do
m

ai
ns

 o
f p

ro
te

ct
io

n
objects

26March 3, 2025 CS 419 © 2025 Paul Krzyzanowski

Su
bj

ec
ts

Capability list for domain D1

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Capability Lists
Capability list = list of objects together with the operations a specific
subject can perform on the objects

• Each item in the list is a capability: the operations allowed on a
specific object
– Also known as a ticket or access token

• A process presents the capability to the OS along with a request
– Possessing the capability means that access is allowed

• The capability is a protected object
– A process cannot modify its capability list

27March 3, 2025 CS 419 © 2025 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

Capability Lists
• Advantages
– Run-time checking is more efficient
– Delegating rights is easy

• Disadvantages
– Creating or deleting files means updating all capability lists
– Changing a file’s permissions is hard
– Hard to find all users that have access to a resource
– Lists can be huge – the system might have millions of objects

• Not used in mainstream systems in place of ACLs
– Limited implementations: Cambridge CAP, IBM AS/400, Google Fuchsia OS

• Capability lists are more commonly used for network services
– Used in single sign-on services and other authorization services such as OAuth and Kerberos (sort of)
– Access Tokens
• Identifies a user’s identity and the access rights permitted on the requested service (not objects!)

28March 3, 2025 CS 419 © 2025 Paul Krzyzanowski

This content is copyright © Paul Krzyzanowski – p@pk.org
Reproduction or distribution without the author's permission is not authorized.

The End

March 3, 2025 29CS 419 © 2025 Paul Krzyzanowski

