
CS 417 – DISTRIBUTED SYSTEMS

Paul Krzyzanowski

Week 12: Infrastructure 
[Original] Google Cluster Architecture

© 2022 Paul Krzyzanowski. No part of this 
content may be reproduced or reposted in 
whole or in part in any manner without the 
permission of the copyright owner.



A note about relevancy
This describes the Google search 
cluster architecture in the mid 2000s. 
The search infrastructure was 
overhauled in 2010. 

Nevertheless, the lessons are still 
valid, and this demonstrates how 
incredible scalability has been 
achieved using commodity computers 
by exploiting parallelism.

2CS 417 © 2022 Paul Krzyzanowski



Search flow

What needs to happen when you do a search?

CS 417 © 2022 Paul Krzyzanowski 3

DNS 
lookup

Submit 
query

Receive 
request

Parse 
query

Search 
the web

Rank 
results

Return 
response



Some statistics
• 3.5 billion searches/day – trillions per year

• Volume grows ~10% per year – ability to scale is crucial

• 16-20% of searches have never been issued before
– Caching won’t help much

• Average user session < 1 minute

• Hundreds of billions of 
web pages indexed
– Index > 100 million gigabytes (1017 bytes)

• 60% of searches are done via a 
mobile device

CS 417 © 2022 Paul Krzyzanowski 4

1 word

2 words3 words

4 words

5 words

Query sizes



What is needed?
• A single Google search query
– Reads 10s-100s of terabytes of data
– Uses tens of billions of CPU cycles

• Environment needs to support tens of thousands of queries per second

• Environment must be
– Fault tolerant
– Economical (price-performance ratio matters)
– Energy efficient (this affects price; watts per unit of performance matters)

• Parallelize the workload
– CPU performance matters less than price/performance ratio

CS 417 © 2022 Paul Krzyzanowski 5



Best Practices?

CS 417 © 2022 Paul Krzyzanowski 6

“Enterprise-grade” components



Key design principles
• Have reliability reside in software, not hardware
– Use low-cost (unreliable) commodity PCs to build a high-end cluster
– Replicate services across machines & detect failures

• Design for best total throughput, not peak server response time
– Response time can be controlled by parallelizing requests
– Rely on replication: this helps with availability too

• Price/performance ratio more important than peak performance

7CS 417 © 2022 Paul Krzyzanowski



1. Contact DNS server(s) to find 
the DNS server responsible for 
google.com

2. Google’s DNS server returns 
addresses based on location of 
request

3. Contact the appropriate cluster

Life of a query – step 1: DNS
• User’s browser must map google.com to an IP address

• “google.com” comprises multiple clusters distributed worldwide
– Each cluster contains thousands of machines

• DNS-based load balancing
– Select cluster by taking user’s geographic & network proximity into account
– Load balance across clusters

DNS Google’s Load-
balanced DNS

8CS 417 © 2022 Paul Krzyzanowski



Life of a query – step 2: Send HTTP request
• IP address corresponds to a load balancer within a cluster

• Load balancer
– Monitors the set of Google Web Servers (GWS)
– Performs local load balancing of requests among available servers

• GWS machine receives the query
– Coordinates the execution of the query
– Formats results into an HTML response to the user

Hardware Load 
Balancer

Google Web Server

Google Web Server

Google Web Server

Google Web Server

Query 
Coordination

Data center

9CS 417 © 2022 Paul Krzyzanowski



Step 3. Find documents via inverted index
Index Servers
• Map each query word → {list of document IDs} (this is the hit list )
– Inverted index generated from web crawlers via MapReduce

• Intersect the hit lists of each per-word query
– Compute the relevance score for each document
– Determine the set of documents
– Sort by relevance score Query word 1

Document ID 
list

Query word 2

Document ID 
list

Query word 3

Document ID 
list

Intersect

10CS 417 © 2022 Paul Krzyzanowski



Parallel search through an inverted index
• Inverted index is 10s of terabytes

• Search is parallelized
– Index is divided into index shards
• Each index shard is built from a randomly chosen subset of documents
• Pool of machines serves requests for each shard
• Pools are load balanced

– Query goes to one machine per pool responsible for a shard

• Final result is ordered list of 
document identifiers (docids)

11CS 417 © 2022 Paul Krzyzanowski

Index server: shard N

Index server: shard N

Index server: shard N

Lo
ad

 
Ba

la
nc

er

Index server: shard 1

Index server: shard 1

Index server: shard 1

Lo
ad

 
Ba

la
nc

er

Google Web Server

Index server: shard 0

Index server: shard 0

Index server: shard 0

Lo
ad

 
Ba

la
nc

er



Sharded & Replicated Index Servers

Index Server

Index Server

Index Server

Shard 0

Index Server

Index Server

Lo
ad

 B
al

an
ce

r

Index Server

Index Server

Index Server

Shard 1

Index Server

Index Server

Lo
ad

 B
al

an
ce

r

Index Server

Index Server

Index Server

Shard 2

Index Server

Index Server

Lo
ad

 B
al

an
ce

r

Index Server

Index Server

Index Server

Shard 3

Index Server

Index Server

Lo
ad

 B
al

an
ce

r

Index Server

Index Server

Index Server

Shard N

Index Server

Index Server

Lo
ad

 B
al

an
ce

r

CS 417 © 2022 Paul Krzyzanowski 12



Step 4. Get title & URL for each docid
For each docid, the GWS looks up the docid to get
• Page title

• URL

• Relevant text: document summary specific to the query

This is handled by document servers (docservers)

13CS 417 © 2022 Paul Krzyzanowski



Parallelizing document lookup
• Like index lookup, document lookup is partitioned & parallelized

• Documents distributed into smaller shards
– Each shard = subset of documents

• Pool of load-balanced servers responsible for processing each shard

Together, document servers access a cached copy of the entire web!

14CS 417 © 2022 Paul Krzyzanowski

Docserver : shard N

Docserver : shard N

Docserver : shard N

Lo
ad

 
Ba

la
nc

er

Docserver : shard 1

Docserver : shard 1

Docserver : shard 1

Lo
ad

 
Ba

la
nc

er

Google Web Server

Docserver: shard 0

Docserver : shard 0

Docserver : shard 0

Lo
ad

 
Ba

la
nc

er



Additional operations
• In parallel with search:
– Send query to a spell-checking system
– Send query to an ad-serving system to generate ads

• When all the results are in, GWS generates HTML output:
– Sorted query results with
• Page titles, summaries, and URLs
• Ads 
• Spelling correction suggestions

Google Web Server

Index server
Index server

Index server
Index server

Docserver
Docserver

Docserver
Docserver

Spell 
checker Ad server

Hardware 
Load 

Balancer

15CS 417 © 2022 Paul Krzyzanowski



Lesson: exploit parallelism
• Instead of looking up matching documents in a large index
– Do many lookups for documents in smaller indices
– Merge results together: merging is simple & inexpensive

• Divide the stream of incoming queries
– Among geographically-distributed clusters
– Load balance among query servers within a cluster

• Achieve linear performance improvement with more machines
– Shards don’t need to communicate with each other
– Increase # of shards across more machines to improve performance

16CS 417 © 2022 Paul Krzyzanowski



Updating & scaling are easy
Updates
• Updates infrequent compared to reads

• Load balancers make updating easy
– Take the system out of the load balancer during the update
– No need to worry about data integrity and locks

• Shards don’t need to communicate with each other

Scaling
• Add more shards as # of documents grows

• Add more replicas if a throughput increase is needed

CS 417 © 2022 Paul Krzyzanowski 17



Summary
• Use software to achieve reliability

• Use replication for high throughput

• Price-performance is more important than peak CPU

• Use commodity hardware

CS 417 © 2022 Paul Krzyzanowski 18



The End

19CS 417 © 2022 Paul Krzyzanowski



The End

23CS 417 © 2022 Paul Krzyzanowski


