
CS 417 – DISTRIBUTED SYSTEMS

Paul Krzyzanowski

Week 12: Security in Distributed Systems
 Part 3: Authentication

© 2023 Paul Krzyzanowski. No part of this
content may be reproduced or reposted in
whole or in part in any manner without the
permission of the copyright owner.

Authentication
For a user (or process):
• Get the user’s identity = identification

• Verify the identity = authentication

• Then decide whether to allow access to resources = authorization

2CS 417 © 2023 Paul Krzyzanowski

3

Three Factors of Authentication

1. Ownership Key, card Can be stolen
Something you have

2. Knowledge Passwords,
PINs

Can be guessed, shared,
stolenSomething you know

3. Inherence Biometrics
(face, fingerprints)

Requires hardware
May be copied
Not replaceable if lost or stolenSomething you are

CS 417 © 2023 Paul Krzyzanowski

Multi-Factor Authentication
Factors may be combined

• ATM machine: 2-factor authentication (2FA)
– ATM card something you have
– PIN something you know

• Password + code delivered via SMS: 2-factor authentication
– Password something you know
– Code something you have: your phone

Two passwords ≠ Two-factor authentication
The factors must be different

4CS 417 © 2023 Paul Krzyzanowski

Authentication: PAP
Password Authentication Protocol

login, password

OKclient server

• Unencrypted, reusable passwords
• Insecure on an open network
• Also, the password file must be protected from open access
– But administrators can still see everyone’s passwords

What if you use the same password on Facebook as on Amazon?

5

name:password
database

CS 417 © 2023 Paul Krzyzanowski

name1:passwd1
name2:passwd2
paul:monkey123

Passwords

PAP: Reusable passwords
PROBLEM 1: Open access to the password file

What if the password file isn’t sufficiently protected and an intruder gets hold of it?
All passwords are now compromised!

Even if a trusted admin sees your password, this might also be your password on other systems.

Solution:

Store a hash of the password in a file
– Given a file, you don’t get the passwords
– The attacker must resort to a dictionary or brute-force attack
– For example, Linux passwords are hashed with SHA-512 hashes (512-bit SHA-2 hash)

PROBLEM 2: Sniffing

Someone who can see network traffic (or over your shoulder) can see the password!

6CS 417 © 2023 Paul Krzyzanowski

Authentication: CHAP
Challenge-Handshake Authentication Protocol

challenge

hash(challenge, secret)

OK

client server

Has shared secret Has shared secret

The challenge is a nonce (random bits)

We create a hash of the nonce and the secret
An intruder does not have the secret and cannot do this!

7

Random string = nonce

CS 417 © 2023 Paul Krzyzanowski

CHAP authentication

Alice network host

“alice” “alice” look up alice’s
key, K

generate random
challenge number CC

R ’ = f(K,C)

R ’ R = f(K, C)

R = R ’ ?“welcome”

an eavesdropper does not see K

8CS 417 © 2023 Paul Krzyzanowski

TOTP: Time-Based Authentication
Time-based One-time Password (TOTP) algorithm
• Both sides share a secret key
– Sometimes sent via a QR code so user can scan it into the TOTP app

• User runs TOTP function to generate a one-time password
one_time_password = hash(secret_key, time)

• User logs in with:
Name, password, and one_time_password

• Service generates the same password
one_time_password = hash(secret_key, time)

CS 417 © 2023 Paul Krzyzanowski 9

Public Key Authentication

10CS 417 © 2023 Paul Krzyzanowski

Public key authentication

• Alice wants to authenticate herself to Bob:

• Bob: generates nonce, S
– Sends it to Alice

• Alice: encrypts S with her private key (signs it)
– Sends result to Bob

Demonstrate we can encrypt or decrypt a nonce
This shows we know the key

A random
bunch of bits

11CS 417 © 2023 Paul Krzyzanowski

Public key authentication
Bob:

1. Look up “alice” in a database of public keys
2. Decrypt the message from Alice using Alice’s public key
3. If the result is S, then Bob is convinced he’s talking with Alice

For mutual authentication, Alice must present Bob with a nonce that Bob
will encrypt with his private key and return

12CS 417 © 2023 Paul Krzyzanowski

Public Keys as Identities
• A public key can be treated as an identity
– Only the owner of the corresponding private key will be able to create the signature

• New identities can be created by generating new random
{private, public} key pairs

• Anonymous identity – no identity management
– A user is known by a random-looking public key
– Anybody can create a new identity at any time
– Anybody can create as many identities as they want
– A user can throw away an identity when it is no longer needed
– Example: Bitcoin identity = hash(public key)

CS 417 © 2023 Paul Krzyzanowski 13

Passkeys - WebAuthn
Passkeys = Passwordless login – endorsed by Apple, Google, Microsoft
– Avoid problems of having users choose strong, unique passwords
– Avoids phishing attacks
– Based on public key cryptography
• Credentials can be backed up and replicated across user devices

Device generates public/private key pair for a specific service
– Private key is stored locally – the service never sees it
• Its use can be authorized with Touch ID, Face ID, local device/user password

– Public key is sent to the server – it associates it with the user account

CS 417 © 2023 Paul Krzyzanowski 14

CS 417 © 2023 Paul Krzyzanowski 15

Passkeys – Setup
User Alice Service

username: alice

Create public/private key pair for
the service
Elliptic Curve or RSA algorithms Public key

Store public key with user info
Enable lookup when presented with a user
login name

See https://passage.id/post/what-is-webauth

Password and/or authentication code Conventional login

Note: the public key is not secret

Store private key securely
Accessible via local password or biometrics.
Associate this key with the service.

Each passkey is unique for each service

https://passage.id/post/what-is-webauth

CS 417 © 2023 Paul Krzyzanowski 16

Passkeys – Login
User Alice Service

username: alice

Here's a challenge: XdQLAxBlL1…

Generate signature for challenge:
Encrypt hash(challenge) with your
private key for this service signature(challenge)

Validate signature:
Decrypt signature with the user's public key
and compare it with hash(challenge)

Welcome, Alice!

Authorize access to
private key via Touch ID,
Face ID, password, …

See https://passage.id/post/what-is-webauth

https://passage.id/post/what-is-webauth

Public key authentication – Identity Binding
Public key authentication relies on associating an identity with a public key
– How do you know it really is Alice’s public key?

Sign the public key
– Once signed, it is tamper-proof
– But we need to know it’s Bob’s public key and who signed it
• Create & sign a data structure that
• Identifies Bob
• Contains his public key
• Identifies who is doing the signing

⇒ digital certificate

17CS 417 © 2023 Paul Krzyzanowski

X.509 certificates

Issuer = Certification Authority (CA)

X.509 v3 Digital Certificate

Certificate data Signature

Subject
Distinguished name Public key

(algorithm & key)

version serial # algorithm
Issuer

Distinguished
Name

Validity
(from-to)

Signature
Algorithm

Signature
(signed by CA)

18CS 417 © 2023 Paul Krzyzanowski

ISO introduced a set of authentication protocols

X.509: Structure for public key certificates:

User’s name, organization, locality, state, country, etc.

X.509 certificates
To validate a certificate

Verify its signature:
1. Get the issuer (CA) from the certificate
2. Validate the certificate’s signature against

the issuer’s public key
– Hash contents of certificate data
– Decrypt CA’s signature with CA’s public key

Obtain CA’s public key (certificate) from trusted source

Certificates prevent someone from using a phony public key to masquerade as
another person

…if you trust the CA

19CS 417 © 2023 Paul Krzyzanowski

Transport Layer Security (TLS)

20CS 417 © 2023 Paul Krzyzanowski

Transport Layer Security (TLS)
Goal: provide a transport layer security protocol
After setup, applications feel like they are using TCP sockets

SSL: Secure Socket Layer
Created with HTTP in mind
– Web sessions should be secure
– Mutual authentication is usually not needed
• Client needs to identify the server, but the server won’t know all clients
• Rely on passwords after the secure channel is set up

Enables TCP services to engage in secure, authenticated transfers
– http, telnet, nntp, ftp, smtp, xmpp, …

SSL evolved to TLS (Transport Layer Security)

CS 417 © 2023 Paul Krzyzanowski 21

TLS Protocol
Goal

Provide authentication (usually one-way), privacy, & data integrity between two applications

Principles
• Data encryption

– Use symmetric cryptography to encrypt data
– Key exchange: keys generated uniquely at the start of each session

• Data integrity
– Include a MAC with transmitted data to ensure message integrity

• Authentication
– Use public key cryptography & X.509 certificates for authentication
– Optional – can authenticate 0, 1, or both parties

• Interoperability & evolution
– Support many different key exchange, encryption, integrity, & authentication protocols – negotiate what to use at the

start of a session

CS 417 © 2023 Paul Krzyzanowski 22

TLS Protocol & Ciphers
Two sub-protocols
1. Authenticate & establish keys
– Authentication
• Public keys (X.509 certificates and RSA or Elliptic Curve cryptography)

– Key exchange options
• Ephemeral Diffie-Hellman (D-H) keys (generated for each session)

2. Communicate
– Data encryption options – symmetric cryptography
• AES GCM, AES CBC, ChaCha20-Poly1305, …

– Data integrity options – message authentication codes
• HMAC-SHA256/384, …

CS 417 © 2023 Paul Krzyzanowski 23

TLS Protocol
(1) Client hello

Version & crypto information
(2) Server hello

Server certificate
[client certificate request]

(3) Verify server certificate

(4) Client key exchange (D-H)

Encrypted master secret

[(5) Send client certificate]

[(6) Verify client certificate]
(7) Client done

(8) Server done

(9) Communicate
Symmetric encryption + MAC

CS 417 © 2023 Paul Krzyzanowski 24

ClientRandom

ServerRandom

(3) D-H key, signature(messages)

[(5) Signature(message)]

Master secret ⇒
 communication keys

Master secret ⇒
 communication keys

TLS_DHE_RSA_WITH_AES_256_CBC_SHA

Client Server

Benefits & Downsides of TLS
Benefits
– Validates the authenticity of the server (if you trust the CA)
– Protects integrity of communications
– Protects the privacy of communications

Downsides
– Longer latency for session setup
– Older protocols had weaknesses
– Attackers can use TLS too!

CS 417 © 2023 Paul Krzyzanowski 25

OAuth 2.0

26CS 417 © 2023 Paul Krzyzanowski

Service Authorization
You want an app to access your data at some service
– E.g., access your Google calendar data

But you want to:
– Not reveal your password to the app
– Restrict the data and operations available to the app
– Be able to revoke the app’s access to the data

CS 417 © 2023 Paul Krzyzanowski 27

OAuth 2.0: Open Authorization
OAuth: framework for service authorization
– Allows you to authorize one website (consumer) to access data from

another website (provider) – in a restricted manner
– Designed initially for web services
– Examples:
• Allow the Moo photo printing service to get photos from your Flickr account
• Allow the NY Times to post a message from your X account

OpenID Connect
– Remote identification: use one login for multiple sites
– Encapsulated within OAuth 2.0 protocol

28CS 417 © 2023 Paul Krzyzanowski

OAuth setup
OAuth is based on
– Getting a token from the service provider

& presenting it each time an application accesses an API at the service
– URL redirection
– JSON data encapsulation

Before users can use OAuth, the app (consumer) must register with the service provider
– Service provider (e.g., Flickr):
• Gets data about your application: name, creator, URL
• Assigns the application (consumer) an ID & a secret
– ID = unique ID for the app (consumer)
– secret = shared secret # between app and service provider

• Presents list of authorization URLs and scopes (access types)

29CS 417 © 2023 Paul Krzyzanowski

Authorization
server

Service
provider

OAuth Entities

Service Provider

Application
(consumer)

Initial setup
30CS 417 © 2023 Paul Krzyzanowski

{app ID, secret}

{app ID, secret}

How does authorization take place?
Application needs an Access Token from the Service
(e.g., moo.com needs an access token from flickr.com)

– Application redirects user to Service Provider
• Request contains: client ID, client secret, scope (list of requested APIs)
• User may need to authenticate at that provider
• User authorizes the requested access
• Service Provider redirects back to consumer with a one-time-use authorization code

– Application now has the Authorization Code
• The previous redirect passed the Authorization Code as part of the HTTP request

– Application exchanges Authorization Code for Access Token
• The legitimate app uses HTTPS (encrypted channel) & sends its secret
• The application now talks securely & directly to the Service Provider
• Service Provider returns Access Token

– Application makes API requests to Service Provider using the Access Token
31CS 417 © 2023 Paul Krzyzanowski

OAuth Entities

Application
(consumer)

You

You want moo.com to access your photos on flickr
32CS 417 © 2023 Paul Krzyzanowski

{app ID, secret}

Authorization
server

Service
provider

Service Provider
{app ID, secret}

OAuth Entities

Application
(consumer)

You

Moo.com app redirects you to the service provider
33CS 417 © 2023 Paul Krzyzanowski

{app ID, secret}

REDIRECT: send
• client ID
• return-URL
• scope (list of requested APIs)

Authorization
server

Service
provider

Service Provider
{app ID, secret}

OAuth Entities

Application
(consumer)

You

You authenticate (optional) & authorize the request at flickr
34CS 417 © 2023 Paul Krzyzanowski

{app ID, secret}

Authenticate

Authorization
server

Service
provider

Service Provider
{app ID, secret}

OAuth Entities

Application
(consumer)

You

Flicker sends a redirect back with an authorization code
35CS 417 © 2023 Paul Krzyzanowski

{app ID, secret}

REDIRECT: authorization code

Authorization
server

Service
provider

Service Provider
{app ID, secret}

OAuth Entities

Application
(consumer)

You

Moo requests an access token (securely)
36CS 417 © 2023 Paul Krzyzanowski

{app ID, secret}

Establish TLS session
Request Access Token

Authorization
server

Service
provider

Service Provider
{app ID, secret}

OAuth Entities

Application
(consumer)

You

Moo gets the. access token (securely)
37CS 417 © 2023 Paul Krzyzanowski

Access Token

Authorization
server

Service
provider

Service Provider
{app ID, secret}

OAuth Entities

Application
(consumer)

You

Moo can send requests to flickr (securely)
38CS 417 © 2023 Paul Krzyzanowski

API requests: f(access_token)

User interaction

Authorization
server

Service
provider

Service Provider

Key Points

• You may still need to log into the
Provider’s OAuth service when
redirected

• You approve the specific access that
you are granting

• The Service Provider validates the
requested access when it gets a token
from the Consumer

39

Play with it at the OAuth 2.0 Playground:
https://developers.google.com/oauthplayground/

CS 417 © 2023 Paul Krzyzanowski

Identity Federation: OpenID Connect

40CS 417 © 2023 Paul Krzyzanowski

Single Sign-On: OpenID Connect
• Designed to solve the problems of
– Having to get an ID per service (website)
– Managing passwords per site

• Decentralized mechanism for single sign-on — layer on top of Oauth 2.0
– Access different services (sites) using the same identity – Simplify account creation at new sites
– User chooses which OpenID provider to use
• OpenID does not specify authentication protocol – up to provider

– Website never sees your password

• OpenID Connect is a standard but not the only solution
– Used by Google, Microsoft, Amazon Web Services, PayPal, Salesforce, …
– Sign in with Apple – based on OAuth 2.0 and OpenID Connect
– Facebook Connect – popular alternative solution

(similar in operation but websites can share info with Facebook, offer friend access, or make
suggestions to users based on Facebook data)

41CS 417 © 2023 Paul Krzyzanowski

OpenID Connect Authentication
• OAuth requests that you specify a “scope”
– List of access methods that the app needs permission to use

• To enable user identification, specify “openid” as a requested scope

• Send request to the identity provider
– Handles user authentication
– Redirects the user back to the client

• Provider returns an access token and an ID token
– The access token contains:
• approved scopes
• expiration
• etc.

– The ID token can be read by the consumer (client) and contains
• Name, screen name, email, birthdate, … whatever the Identity Provider chose to send

CS 417 © 2023 Paul Krzyzanowski 42

same as with OAuth requests for authorization

Cryptographic toolbox
• Symmetric encryption

• Public key encryption

• Hash functions

• Random number generators

43CS 417 © 2023 Paul Krzyzanowski

Examples
• Key exchange
– Public key cryptography

• Key exchange + secure communication
– Random # + public key cryptography + symmetric cryptography

• Authentication
– Nonce (random #) + encryption

• Message authentication code
– Hash + symmetric keys (random #s)

• Digital signature
– Hash + public key cryptography

CS 417 © 2023 Paul Krzyzanowski 44

The End

45CS 417 © 2023 Paul Krzyzanowski

