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Goals of Security
Keep systems, programs, and data secure
The CIA* Triad:

1. Confidentiality

2. Integrity

3. Availability
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*No relationship to the Central Intelligence Agency

Identification AuthorizationAuthentication



Confidentiality
• Keep data & resources hidden
– Data will only be shared with authorized individuals
– Sometimes – conceal the existence of data or communication

• Traditional focus of computer security

Data confidentiality
“The property that information is not made available or disclosed to unauthorized 
individuals, entities, or processes [i.e., to any unauthorized system entity].” 

– RFC 4949, Internet Security Glossary
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Integrity
The trustworthiness of the data or resources
– Preventing unauthorized changes to the data or resources

• Data integrity
– Data integrity: property that data has not been modified or destroyed in an 

unauthorized or accidental manner
• Origin integrity
– Authentication

• System integrity
– The ability of a system to perform its intended function, free from deliberate or 

inadvertent manipulation
Often more important than confidentiality!
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Availability
• Being able to use the data or resources
• Property of a system being accessible and capable of working to 

required performance specifications

Turning off a computer provides confidentiality & 
integrity but hurts availability

Denial of Service (DoS) attacks target availability
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Thinking about security
Security is not

just adding encryption
… or using a 512-bit key instead of a 64-bit key
… or changing passwords
… or setting up a firewall

It is a systems issue
= Hardware + firmware + OS + app software + networking + people
= Processes & procedures, policies, detection, forensics

“Security is a chain: it’s only as secure as the weakest link”
– Bruce Schneier

6CS 417 © 2023 Paul Krzyzanowski



The Operating System
The operating system normally handles security
• User authentication – passwords
• Access control – file permissions, system call access
• Resource management – memory limits, scheduling

But it can only control resources it owns
– Other systems may have different policies
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Distributed Control
Distributed systems often use components that belong to different 
entities

Programs may:
• Call remote services – are they trustworthy?
• Receive requests  – are they from a legitimate & authorized user or service?
• Store data on remote servers – who manages them?
• Send data over a network – what route do the packets take?
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Cryptography ¹ Security

Cryptography may be a component of a secure system

Adding cryptography may not make a system secure
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Cryptography: what is it good for?

• Confidentiality
– Others cannot read contents of the message

• Authentication
– Determine origin of message

• Integrity
– Verify that message has not been modified

• Nonrepudiation
– Sender should not be able to falsely deny that a message was sent
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Confidentiality
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Encryption
Plaintext (cleartext) message P

Cipher = cryptographic algorithm

Encryption E(P)

Produces Ciphertext, C = E(P)

Decryption, P = D(C)
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Properties of a good cryptosystem
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1

2

3 The keys should be large enough that a brute force attack is not 
feasible

Given ciphertext, there should be no way to extract the original 
plaintext or the key short of enumerating all possible keys 
(i.e., a brute force attack)

Ciphertext should be indistinguishable from random values



Symmetric key ciphers
Same shared secret key, K, for encryption & decryption

C = EK(P)
P = DK(C)
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Communication with a symmetric cipher
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EK(P) DK(C)

Alice BobShared secret key, K

DK(C) EK(P)

decrypt message with
the shared key, K

encrypt message with
the shared key, K

encrypt message with
the shared key, K

decrypt message with
the shared key, K



Some popular symmetric ciphers
AES (Advanced Encryption 
Standard)

• FIPS standard since 2002
• 128, 192, or 256-bit keys; operates on 128-bit blocks
• By far the most widely used symmetric encryption algorithm

DES, 3DES • FIPS standard since 1976; 56-bit key; operates on 64-bit (8-byte) 
blocks

• Triple DES recommended since 1999 (112 or 168 bits)
• Not actively used anymore; AES is better by any measure

ChaCha20 128 or 256-bit keys – stream cipher – faster than AES on lower-end 
processors

Twofish 128, 192 or 256 bits – block cipher

IDEA 128-bit keys; operates on 64-bit blocks
More secure than DES but faster algorithms are available
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Public Key Cryptography
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Public-key algorithm
Two related keys (A, a)

C = EA(P) P = Da(C)
C′ = Ea(P) P = DA(C′)

• Examples:
– RSA
– Elliptic Curve Cryptography (ECC) 

• Key length
– Unlike symmetric cryptography, not every number is a valid key
– 3072-bit RSA ≈ 256-bit elliptic curve ≈ 128-bit symmetric cipher
– 15360-bit RSA ≈ 521-bit elliptic curve ≈ 256-bit symmetric cipher
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A is a public key
a is a private key
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Communication with public key algorithms
Different keys for encrypting and decrypting
– No need to worry about secure key distribution
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EB(P) Db(C)

Alice Bob
Alice’s public key: KA

Bob’s public key: KB

Da(C) EA(P)

decrypt message with
Alice’s private key

encrypt message with
Alice’s public key

encrypt message with
Bob’s public key

decrypt message with
Bob’s private key

Communication with public key algorithms
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(Alice’s private key: Ka) (Bob’s private key: Kb)
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Communicating with symmetric cryptography

• Both parties must agree on a secret key, K
• Message is encrypted, sent, decrypted at other side

Key distribution must be secret
Otherwise, messages can be decrypted

Users can be impersonated

Alice

EK(P) DK(C)

Bob
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Key distribution

Secure key distribution is the biggest problem with 
symmetric cryptography
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Distributing Keys
• Pre-shared keys
– Initial configuration, out of band (send via USB key, recite, …)

• Trusted third party
– Knows all keys
– Alice creates a temporary key (session key)
– Encrypts it with her key – sends to Trent
– Trent decrypts it and sends it to Bob
– Alternatively: Trent creates a session key – encrypts it for Alice & for Bob

• Public key cryptography
– Alice encrypts a message with Bob’s public key
– Only Bob can decrypt

• Diffie-Hellman
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Permanent vs. Ephemeral Keys
Permanent keys
• Keys you use over and over again – e.g., your password

Ephemeral keys
• Keys that are created spontaneously for one use, such as a communication session, and then never 

used again
= session keys

Why use ephemeral keys?
• The more data is encrypted with the same key, the easier it is for cryptanalysts to try to mount attacks
• Perfect forward secrecy = encrypt data with ephemeral keys
– If an attacker gets hold of a key, it will not enable them to decrypt other sessions

• We may have key exchange protocols that need to create a key for two parties to communicate
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Key exchange with a trusted third party
• Trusted third party, Trent, knows all the keys
• Everyone else only knows their own keys
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We’d need to enhance this to avoid replay attacks: time stamps, sequence numbers 

AliceBob

DB(C)

EA(P)
K

K

EB(K)
K

EB(K) EA(K)

DA(K)
K

Trent

1. Bob creates a random session key, K
2. Bob encrypts it with his secret key: EB(K)
3. Bob sends EB(K) to Trent
4. Trent decrypts using Bob’s key
5. Trent encrypts K for Alice: EA(K)
6. Trent sends EA(K) to Alice
7. Alice decrypts K=DA(K)

A = Alice’s key
B = Bob’s key
K = Session key

This is the key exchange 
process



Key exchange with a trusted third party
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A = Alice’s key
B = Bob’s key
K = Session key

1. Bob creates a random session key, K
2. Bob encrypts it with his secret key: EB(K)
3. Bob sends EB(K) to Trent
4. Trent decrypts using Bob’s key
5. Trent encrypts K for Alice: EA(K)
6. Trent sends EA(K) to Alice
7. Alice decrypts K=DA(K)
8. Alice & Bob communicate, encrypting messages with the session key, K

Alice

EK(P) DK(C)

Bob

EK(P)

… continued



Diffie-Hellman Key Exchange 
Key distribution algorithm
– Allows two parties to share a secret key over a non-secure channel

– Not public key encryption

– Based on difficulty of computing discrete logarithms in a finite field compared 
with ease of calculating exponentiation

Allows us to negotiate a secret common key without fear of eavesdroppers:
common key = f(your_private_key, their_public_key)
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Diffie-Hellman Key Exchange
• All arithmetic performed in a

field of integers modulo some large number

• Both parties agree on
– a large prime number p
– and a number a < p

• Each party generates a public/private key pair

Private key for user i:  Xi

Public key for user i:  Yi =

30

piX moda
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Diffie-Hellman exponential key exchange
• Alice has secret key XA

• Alice sends Bob public key YA

• Alice computes

• Bob has secret key XB

• Bob sends Alice public key YB

K = (Bob’s public key) (Alice’s private key) mod p
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pYK AX
B mod=
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Diffie-Hellman exponential key exchange
• Alice has secret key XA

• Alice sends Bob public key YA

• Alice computes

• Bob has secret key XB

• Bob sends Alice public key YB

• Bob computes

K’ = (Alice’s public key) (Bob’s private key) mod p
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pYK BX
A mod=pYK AX

B mod=
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Diffie-Hellman exponential key exchange
• Alice has secret key XA

• Alice sends Bob public key YA

• Alice computes

• expanding:

• Bob has secret key XB

• Bob sends Alice public key YB

• Bob computes

• expanding:

K is a common key, known only to Bob and Alice

K = K’
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pYK AX
B mod= pYK BX

A mod=

pp AB XX mod)mod(a=

pYK AX
B mod=

pABXX moda=

pYK BX
B mod=

pp BA XX mod)mod(a=

pBAXX moda=
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Hybrid Cryptosystems
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Hybrid Cryptosystems
• Session key: randomly-generated key for one communication session

• Use a public key algorithm to send the session key

• Use a symmetric algorithm to encrypt data with the session key

Public key algorithms are almost never used to encrypt messages
– MUCH slower; vulnerable to chosen-plaintext attacks
– RSA-2048 approximately 55x slower to encrypt and 2,000x slower to decrypt than 

AES-256
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K EB(K)

Alice Bob

Bob’s public key: KB

encrypt session key with
Bob’s public key

K = Db(EB(K))
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Communication with a hybrid cryptosystem

Pick a random session key, K

K

Bob decrypts K with
his private key

Now Bob knows the secret session key, K



EK(P) DK(C)

Alice Bob
Bob’s public key: KB

encrypt message using a
symmetric algorithm and

key K

decrypt message using a
symmetric algorithm and

key K
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Communication with a hybrid cryptosystem

EB(K) K = Db(EB(K))



EK(P) DK(C)

Alice Bob
Bob’s public key: KB

decrypt message using a
symmetric algorithm and

key K

encrypt message using a
symmetric algorithm and

key K
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Communication with a hybrid cryptosystem

EB(K) K = Db(EB(K))

DK(Cʹ) EK(Pʹ)



Cryptographic systems: summary
• Symmetric ciphers
– Shared secret key

• Asymmetric ciphers – public key cryptosystems
– Non-shared private key & publicly-shared public key

• Hybrid cryptosystem
– Use a public key algorithm (including Diffie-Hellman) to send a randomly-chosen session key
• Session key is ephemeral

– Use a symmetric key algorithm with the session key to encrypt traffic back & forth
– Diffie-Hellman usually used because it's quick to generate keys

• Key exchange algorithms
– Trusted Third Party
– Diffie Hellman
– Public key
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Enables secure communication without using 
a 3rd party or knowledge of a shared secret
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The End
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