
CS 417 – DISTRIBUTED SYSTEMS

Paul Krzyzanowski

Week 12: Security in Distributed Systems
 Part 1: Cryptography Intro

© 2023 Paul Krzyzanowski. No part of this
content may be reproduced or reposted in
whole or in part in any manner without the
permission of the copyright owner.

Goals of Security
Keep systems, programs, and data secure
The CIA* Triad:

1. Confidentiality

2. Integrity

3. Availability

CS 417 © 2023 Paul Krzyzanowski 2

*No relationship to the Central Intelligence Agency

Identification AuthorizationAuthentication

Confidentiality
• Keep data & resources hidden
– Data will only be shared with authorized individuals
– Sometimes – conceal the existence of data or communication

• Traditional focus of computer security

Data confidentiality
“The property that information is not made available or disclosed to unauthorized
individuals, entities, or processes [i.e., to any unauthorized system entity].”

– RFC 4949, Internet Security Glossary

3CS 417 © 2023 Paul Krzyzanowski

Integrity
The trustworthiness of the data or resources
– Preventing unauthorized changes to the data or resources

• Data integrity
– Data integrity: property that data has not been modified or destroyed in an

unauthorized or accidental manner
• Origin integrity
– Authentication

• System integrity
– The ability of a system to perform its intended function, free from deliberate or

inadvertent manipulation
Often more important than confidentiality!

4CS 417 © 2023 Paul Krzyzanowski

Availability
• Being able to use the data or resources
• Property of a system being accessible and capable of working to

required performance specifications

Turning off a computer provides confidentiality &
integrity but hurts availability

Denial of Service (DoS) attacks target availability

5CS 417 © 2023 Paul Krzyzanowski

Thinking about security
Security is not

just adding encryption
… or using a 512-bit key instead of a 64-bit key
… or changing passwords
… or setting up a firewall

It is a systems issue
= Hardware + firmware + OS + app software + networking + people
= Processes & procedures, policies, detection, forensics

“Security is a chain: it’s only as secure as the weakest link”
– Bruce Schneier

6CS 417 © 2023 Paul Krzyzanowski

The Operating System
The operating system normally handles security
• User authentication – passwords
• Access control – file permissions, system call access
• Resource management – memory limits, scheduling

But it can only control resources it owns
– Other systems may have different policies

CS 417 © 2023 Paul Krzyzanowski 7

Distributed Control
Distributed systems often use components that belong to different
entities

Programs may:
• Call remote services – are they trustworthy?
• Receive requests – are they from a legitimate & authorized user or service?
• Store data on remote servers – who manages them?
• Send data over a network – what route do the packets take?

CS 417 © 2023 Paul Krzyzanowski 8

Cryptography ¹ Security

Cryptography may be a component of a secure system

Adding cryptography may not make a system secure

9CS 417 © 2023 Paul Krzyzanowski

Cryptography: what is it good for?

• Confidentiality
– Others cannot read contents of the message

• Authentication
– Determine origin of message

• Integrity
– Verify that message has not been modified

• Nonrepudiation
– Sender should not be able to falsely deny that a message was sent

10CS 417 © 2023 Paul Krzyzanowski

Confidentiality

CS 417 © 2023 Paul Krzyzanowski 12

Encryption
Plaintext (cleartext) message P

Cipher = cryptographic algorithm

Encryption E(P)

Produces Ciphertext, C = E(P)

Decryption, P = D(C)

13CS 417 © 2023 Paul Krzyzanowski

Properties of a good cryptosystem

CS 417 © 2023 Paul Krzyzanowski 14

1

2

3 The keys should be large enough that a brute force attack is not
feasible

Given ciphertext, there should be no way to extract the original
plaintext or the key short of enumerating all possible keys
(i.e., a brute force attack)

Ciphertext should be indistinguishable from random values

Symmetric key ciphers
Same shared secret key, K, for encryption & decryption

C = EK(P)
P = DK(C)

15CS 417 © 2023 Paul Krzyzanowski

Communication with a symmetric cipher

CS 417 © 2023 Paul Krzyzanowski 16

EK(P) DK(C)

Alice BobShared secret key, K

DK(C) EK(P)

decrypt message with
the shared key, K

encrypt message with
the shared key, K

encrypt message with
the shared key, K

decrypt message with
the shared key, K

Some popular symmetric ciphers
AES (Advanced Encryption
Standard)

• FIPS standard since 2002
• 128, 192, or 256-bit keys; operates on 128-bit blocks
• By far the most widely used symmetric encryption algorithm

DES, 3DES • FIPS standard since 1976; 56-bit key; operates on 64-bit (8-byte)
blocks

• Triple DES recommended since 1999 (112 or 168 bits)
• Not actively used anymore; AES is better by any measure

ChaCha20 128 or 256-bit keys – stream cipher – faster than AES on lower-end
processors

Twofish 128, 192 or 256 bits – block cipher

IDEA 128-bit keys; operates on 64-bit blocks
More secure than DES but faster algorithms are available

CS 417 © 2023 Paul Krzyzanowski 17

Public Key Cryptography

CS 417 © 2023 Paul Krzyzanowski 18

Public-key algorithm
Two related keys (A, a)

C = EA(P) P = Da(C)
C′ = Ea(P) P = DA(C′)

• Examples:
– RSA
– Elliptic Curve Cryptography (ECC)

• Key length
– Unlike symmetric cryptography, not every number is a valid key
– 3072-bit RSA ≈ 256-bit elliptic curve ≈ 128-bit symmetric cipher
– 15360-bit RSA ≈ 521-bit elliptic curve ≈ 256-bit symmetric cipher

19

A is a public key
a is a private key

CS 417 © 2023 Paul Krzyzanowski

Communication with public key algorithms
Different keys for encrypting and decrypting
– No need to worry about secure key distribution

21CS 417 © 2023 Paul Krzyzanowski

EB(P) Db(C)

Alice Bob
Alice’s public key: KA

Bob’s public key: KB

Da(C) EA(P)

decrypt message with
Alice’s private key

encrypt message with
Alice’s public key

encrypt message with
Bob’s public key

decrypt message with
Bob’s private key

Communication with public key algorithms

22

(Alice’s private key: Ka) (Bob’s private key: Kb)

CS 417 © 2023 Paul Krzyzanowski

Communicating with symmetric cryptography

• Both parties must agree on a secret key, K
• Message is encrypted, sent, decrypted at other side

Key distribution must be secret
Otherwise, messages can be decrypted

Users can be impersonated

Alice

EK(P) DK(C)

Bob

23CS 417 © 2023 Paul Krzyzanowski

Key distribution

Secure key distribution is the biggest problem with
symmetric cryptography

24CS 417 © 2023 Paul Krzyzanowski

Distributing Keys
• Pre-shared keys
– Initial configuration, out of band (send via USB key, recite, …)

• Trusted third party
– Knows all keys
– Alice creates a temporary key (session key)
– Encrypts it with her key – sends to Trent
– Trent decrypts it and sends it to Bob
– Alternatively: Trent creates a session key – encrypts it for Alice & for Bob

• Public key cryptography
– Alice encrypts a message with Bob’s public key
– Only Bob can decrypt

• Diffie-Hellman

CS 417 © 2023 Paul Krzyzanowski 25

Permanent vs. Ephemeral Keys
Permanent keys
• Keys you use over and over again – e.g., your password

Ephemeral keys
• Keys that are created spontaneously for one use, such as a communication session, and then never

used again
= session keys

Why use ephemeral keys?
• The more data is encrypted with the same key, the easier it is for cryptanalysts to try to mount attacks
• Perfect forward secrecy = encrypt data with ephemeral keys
– If an attacker gets hold of a key, it will not enable them to decrypt other sessions

• We may have key exchange protocols that need to create a key for two parties to communicate

CS 417 © 2023 Paul Krzyzanowski 26

Key exchange with a trusted third party
• Trusted third party, Trent, knows all the keys
• Everyone else only knows their own keys

27CS 417 © 2023 Paul Krzyzanowski

We’d need to enhance this to avoid replay attacks: time stamps, sequence numbers

AliceBob

DB(C)

EA(P)
K

K

EB(K)
K

EB(K) EA(K)

DA(K)
K

Trent

1. Bob creates a random session key, K
2. Bob encrypts it with his secret key: EB(K)
3. Bob sends EB(K) to Trent
4. Trent decrypts using Bob’s key
5. Trent encrypts K for Alice: EA(K)
6. Trent sends EA(K) to Alice
7. Alice decrypts K=DA(K)

A = Alice’s key
B = Bob’s key
K = Session key

This is the key exchange
process

Key exchange with a trusted third party

28CS 417 © 2023 Paul Krzyzanowski

A = Alice’s key
B = Bob’s key
K = Session key

1. Bob creates a random session key, K
2. Bob encrypts it with his secret key: EB(K)
3. Bob sends EB(K) to Trent
4. Trent decrypts using Bob’s key
5. Trent encrypts K for Alice: EA(K)
6. Trent sends EA(K) to Alice
7. Alice decrypts K=DA(K)
8. Alice & Bob communicate, encrypting messages with the session key, K

Alice

EK(P) DK(C)

Bob

EK(P)

… continued

Diffie-Hellman Key Exchange
Key distribution algorithm
– Allows two parties to share a secret key over a non-secure channel

– Not public key encryption

– Based on difficulty of computing discrete logarithms in a finite field compared
with ease of calculating exponentiation

Allows us to negotiate a secret common key without fear of eavesdroppers:
common key = f(your_private_key, their_public_key)

29CS 417 © 2023 Paul Krzyzanowski

Diffie-Hellman Key Exchange
• All arithmetic performed in a

field of integers modulo some large number

• Both parties agree on
– a large prime number p
– and a number a < p

• Each party generates a public/private key pair

Private key for user i: Xi

Public key for user i: Yi =

30

piX moda

CS 417 © 2023 Paul Krzyzanowski

Diffie-Hellman exponential key exchange
• Alice has secret key XA

• Alice sends Bob public key YA

• Alice computes

• Bob has secret key XB

• Bob sends Alice public key YB

K = (Bob’s public key) (Alice’s private key) mod p

31

pYK AX
B mod=

CS 417 © 2023 Paul Krzyzanowski

Diffie-Hellman exponential key exchange
• Alice has secret key XA

• Alice sends Bob public key YA

• Alice computes

• Bob has secret key XB

• Bob sends Alice public key YB

• Bob computes

K’ = (Alice’s public key) (Bob’s private key) mod p

32

pYK BX
A mod=pYK AX

B mod=

CS 417 © 2023 Paul Krzyzanowski

Diffie-Hellman exponential key exchange
• Alice has secret key XA

• Alice sends Bob public key YA

• Alice computes

• expanding:

• Bob has secret key XB

• Bob sends Alice public key YB

• Bob computes

• expanding:

K is a common key, known only to Bob and Alice

K = K’

33

pYK AX
B mod= pYK BX

A mod=

pp AB XX mod)mod(a=

pYK AX
B mod=

pABXX moda=

pYK BX
B mod=

pp BA XX mod)mod(a=

pBAXX moda=

CS 417 © 2023 Paul Krzyzanowski

Hybrid Cryptosystems

CS 417 © 2023 Paul Krzyzanowski 34

Hybrid Cryptosystems
• Session key: randomly-generated key for one communication session

• Use a public key algorithm to send the session key

• Use a symmetric algorithm to encrypt data with the session key

Public key algorithms are almost never used to encrypt messages
– MUCH slower; vulnerable to chosen-plaintext attacks
– RSA-2048 approximately 55x slower to encrypt and 2,000x slower to decrypt than

AES-256

CS 417 © 2023 Paul Krzyzanowski 35

K EB(K)

Alice Bob

Bob’s public key: KB

encrypt session key with
Bob’s public key

K = Db(EB(K))

CS 417 © 2023 Paul Krzyzanowski 36

Communication with a hybrid cryptosystem

Pick a random session key, K

K

Bob decrypts K with
his private key

Now Bob knows the secret session key, K

EK(P) DK(C)

Alice Bob
Bob’s public key: KB

encrypt message using a
symmetric algorithm and

key K

decrypt message using a
symmetric algorithm and

key K

CS 417 © 2023 Paul Krzyzanowski 37

Communication with a hybrid cryptosystem

EB(K) K = Db(EB(K))

EK(P) DK(C)

Alice Bob
Bob’s public key: KB

decrypt message using a
symmetric algorithm and

key K

encrypt message using a
symmetric algorithm and

key K
CS 417 © 2023 Paul Krzyzanowski 38

Communication with a hybrid cryptosystem

EB(K) K = Db(EB(K))

DK(Cʹ) EK(Pʹ)

Cryptographic systems: summary
• Symmetric ciphers
– Shared secret key

• Asymmetric ciphers – public key cryptosystems
– Non-shared private key & publicly-shared public key

• Hybrid cryptosystem
– Use a public key algorithm (including Diffie-Hellman) to send a randomly-chosen session key
• Session key is ephemeral

– Use a symmetric key algorithm with the session key to encrypt traffic back & forth
– Diffie-Hellman usually used because it's quick to generate keys

• Key exchange algorithms
– Trusted Third Party
– Diffie Hellman
– Public key

39

Enables secure communication without using
a 3rd party or knowledge of a shared secret

CS 417 © 2023 Paul Krzyzanowski

The End

40CS 417 © 2023 Paul Krzyzanowski

