CS 417 - DISTRIBUTED SYSTEMS

Week 11: Content Delivery+
Part 1. Event Streaming — Kafka

» &3 2 ©72023 Paul Krzyzanowski. No part of this

= I Y. y content may be reproduced or reposted in

P au | K rzyZ anows k| 4 : whole or in part in any manner without the
/\ ‘ permission of the copyright owner.

Message Processing

How do we design a computing cluster to process huge, never-ending streams of
messages from multiple sources?

% — processing

e .

) processing

&
—_—
M processing

8

m .

© — processing

(@]

[72]

[.

3 W processing

W processing

£ W processing

8)

o W processing

0

3

CS 417 © 2023 Paul Krzyzanow ski 2

Apache Kafka

Kafka is

* Open-source H(CI

A dlstrlbuted streaming platform

High-performance

Distributed

Durable

Fault-tolerant
» Publish-subscribe messaging system

Messages may be anything:
loT (Internet of Things) reports, logs, alerts, user activity, data pipelines, ...

CS 417 © 2023 Paul Krzyzanow ski 3

Publish-Subscribe Messaging

Publishers send streams of messages = producers
Subscribers receive messages = consumers

Message broker = messaging system
— A service that provides a loose coupling between producers & consumers

Lo suscier
Publisher “

mgrs) EEEED
Publisher «

. g
Publisher «

o T =) ET
oy

Consumers

CS 417 © 2023 Paul Krzyzanow ski 4

Message broker
Producers

Publish-Subscribe Messaging: Message broker

Message broker stores messagesin a queue (log)

Subscribers retrieve messages from the queue

— First-in, First-out (FIFO) ordering

— Producers & consumers do not have to be synchronized: read & write at different rates

Cruise B RS
e RS
e B
I =)

Producers

Message broker

CS 417 © 2023 Paul Krzyzanow ski

=) (2T
Lo o suscrier
mgrs) (B
oo g susciver
) (ERED

Consumers

Publish-Subscribe Messaging: Multiple topics

W e will often have various message streams
— Different purposes — e.g., loT temperature reports, error logs, page views, ...
— Different consumers will be interested in different streams

Streams are identified by a topic
— Publishers send messages to a topic and subscribers subscribe to a topic

I o
e [
e L
e e

Producers

Topic:

logs
) (o))

Topic: alerts

Message broker

CS 417 © 2023 Paul Krzyzanow ski

gy ERED
=y BT
oo s] supsciber
2 g Subsciber
) D

Consumers

Publish-Subscribe Messaging: Brokers

Kafka runs as a cluster on one or more servers
Each server is called a broker
— A Kafka deployment may have anywhere from 1 to 1000s of brokers

Kafka can feed messages to
— Real-time systems: e.g., Spark Streaming
— Batch processing: e.g., store to Amazon S3 or HDFS & then use MapReduce or Spark

" ubisher Topic Lo suscier
Publisher “ opic: logs

3 E3A0 | ey (ETT
Publisher | w5 L3
TR BT | o e o on g Subsciiber

N3 .
iad S
Publisher
iad
Message broker

Producers Consumers
CS 417 © 2023 Paul Krzyzanow ski

Scaling: Partitions

Each topic is stored as a partitioned log
— One message log is broken up (partitioned) into multiple smaller logs
— Each chunk is a partition and can be stored on a different server

A partitioned log enables messages for a topic to scale beyond the capacity of a
single server Topic X

o =~ =~ Do0o 0
Partition 1 =~ == == == == == o= o= - m

Server

Server

Consumers

o 1L
‘ Partition 2
— DD OD

Latest <& Earliest message

CS 417 © 2023 Paul Krzyzanow ski

Scaling: Partitions

Partition = ordered, immutable sequence of messages that is continually
appended to

Each message record contains a sequential ID # to identify
the message in its partition

Topic X

o =~ =~ Do0o 0
Partition 1 =~ == == == == == o= o= - m

Server

Server

o 1L
‘ Partition 2
— DD OD

Consumers

Latest ¢ Earliest

CS 417 © 2023 Paul Krzyzanow ski 9

Fault Tolerance & Replication

Messages in a partition are durable: written to disk
— Persist for a configurable time period — then erased

Consensus-based state machine replication (similarto Raft)
— One server is elected to be the leader for a partition

— 0 or more other servers are followers
— Replication amount is configurable

— Leader handles all
read/write requests Partition O .

« Data propagated to followers

Read messages Write messages

Leader

WSensus—based replication

. . Follower 0
* Clients do not communicate N
with followers artition
Follower 1

Partition 0" -

CS 417 © 2023 Paul Krzyzanow ski 10

Fault Tolerance & Replication

What if the leader dies after receiving a message but before replicating it to
followers?

Producer can choose:

* Receive an acknowledgmentwhen the broker receives a message

or Read messages Write messages

Leader

* Receive an acknowledgment

) Partition O
only when the message s
replicated to followers Follower 0
Partition O'
Follower 1

Partition 0"

CS 417 © 2023 Paul Krzyzanow ski 11

Achieving Scale

Producers

» Clients choose which partition to write message to
— Default: round-robin distribution to balance the load evenly across multiple brokers

« Create more partitions for a topic = more load distribution

consumers
e Consumer group = one or more consumers

* Group members share the same message queue for the topic
— Messages to the topic get distributed among the members of the consumer group

* More consumersin a group = more processing capacity

CS 417 © 2023 Paul Krzyzanow ski 12

Queuing vs. Publish-Subscribe

Queuing model

» Pool of consumers that take messages from a shared queue
* When any consumer gets a message, it is out of the queue

* Only one consumer gets each message

 Great for distributing processing among multiple subscribers

-

------ o
o

CS 417 © 2023 Paul Krzyzanow ski 13

Queuing Model

Queuing vs. Publish-Subscribe

Publish-Subscribe model
« Each consumer that subscribes to a topic will get every message for that topic

» Allows multiple clients to share the same data ... but does not scale

o B
0 B

O

Publish-Subscribe Model

------ e L s Jwe J s

CS 417 © 2023 Paul Krzyzanow ski 14

Queuing vs. Publish-Subscribe

Queuing or Publish-Subscribe model? Kafka offers both!

« With consumer groups, consumers can distribute messages among a collection of processes

« Each consumer group provides a publish-subscribe model
— Consumers can join separate groups to receive the same set of messages

o 3
m — One consumergroup
o

m Subscriber R
- == m SISl «—— Separate consumer groups
Publish-Subscribe Model m Subscriber Ry

CS 417 © 2023 Paul Krzyzanow ski 15

- DEOD

Queuing Model

Disk storage

Kafka provides durable message logs

* Messages will not be lost if the system dies and restarts

But disks are slow ... even SSDs!
* Not necessarily — depends how you use them
* Huge performance difference between random block access and sequential access

- Kafka optimizes for large sequential writes & reads

— Sequential disk operations can be thousands of times
faster than random access

CS 417 © 2023 Paul Krzyzanow ski

16

Apache Kafka Is

* Open-source
— Developed by Linkedin and donated to the Apache Software Foundation, writteb in Scala and Java

* High-performance

— Scalable to handle huge volumes of incoming messages by partitioning each message queue (log) among multiple
servers

— Partitioned log enables the log to be larger than the capacity of any one server
— Consumer groups enable the scaling of message processing

» Distributed
— Each message queue (log) is divided among multiple servers

e Durable
— Message logs are written to disk (via large streaming writes for best performance)

* Fault-tolerant
— Support for redundancy with a leader & followers per partition

* Publish-subscribe messaging system
— Publish & subscribe to topics

CS 417 © 2023 Paul Krzyzanow ski 17

Kafka Summary

 Solved the problem of dealing with continuous data streams
» Solves the scaling problem by using partitioned logs

« Supports both single queue & publish-subscribe models

« Message ordering is guaranteed per-partition only

* Well-used, proven performance

Activision, AirBnB, Tinder, Pinterest, Uber, Netflix, LinkedIn, Microsoft, many
banks, ...

See https://kafka.apache.org/powered-by

CS 417 © 2023 Paul Krzyzanow ski 18

https://kafka.apache.org/powered-by

The End

CS 417 © 2023 Paul Krzyzanow ski

19

Kafka uses (required) Apache ZooKeeper for coordination

ZooKeeper = Google Chubby

— Getting heartbeats from brokers
— Leader election

— Configuring replication settings
— Tracking members of cluster

— Etc.

Producers
— Use it to find partitions for a topic

Consumers

— Use it to track the current
index # (offset) of the next message
in each partition they're reading

p
Since April 2021, Kafka can be configured to run

without ZooKeeper

» Added support for an internal Raft quorum (reliable
log replication)
« Metadata can now be stored inside Kafka as a log
— Internal topic called @metadata
— Replicated via Raft
— Brokers can get updates by reading the tail of this

log

_

~

)

CS 417 © 2023 Paul Krzyzanow ski

20

Colors

 Text goes here — link — followed link

 Here is some callout text ... and in blue

« Here is some green callout text

Background Text 2

CS 417 © 2023 Paul Krzyzanow ski 21

http://poopybrain.com/
http://pk.org/

	Slide 1
	Slide 2: Message Processing
	Slide 3: Apache Kafka
	Slide 4: Publish-Subscribe Messaging
	Slide 5: Publish-Subscribe Messaging: Message broker
	Slide 6: Publish-Subscribe Messaging: Multiple topics
	Slide 7: Publish-Subscribe Messaging: Brokers
	Slide 8: Scaling: Partitions
	Slide 9: Scaling: Partitions
	Slide 10: Fault Tolerance & Replication
	Slide 11: Fault Tolerance & Replication
	Slide 12: Achieving Scale
	Slide 13: Queuing vs. Publish-Subscribe
	Slide 14: Queuing vs. Publish-Subscribe
	Slide 15: Queuing vs. Publish-Subscribe
	Slide 16: Disk storage
	Slide 17: Apache Kafka is
	Slide 18: Kafka Summary
	Slide 19: The End
	Slide 20: Zookeeper
	Slide 21: Colors

