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MapReduce isn't always the answer

MapReduce works well for certain problems

— The framework provides
« Automatic parallelization
« Automatic job distribution

For others:
— May require many iterations of MapReduce

— Data locality usually not preserved between Map and Reduce
* Lots of communication between map and reduce workers
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Bulk Synchronous Parallel (BSP)

Created as a computing model for parallel computation

Execution is a series of supersteps
1. Concurrent computation
2. Communication
3. Barrier synchronization

Initial data Compute Input msgs Compute
Initial data Compute Input msgs Compute
Initial data Compute Input msgs Compute
Initial data Compute Input msgs Compute
( J (
| |
Superstep 0 Superstep 1
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Bulk Synchronous Parallel (BSP)

A

Superstep 0 Superstep 1 Superstep 2 Superstep 3 Superstep 4 Superstep 5
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Bulk Synchronous Parallel (BSP)

Series of supersteps

» Processes (workers) are randomly assigned to

1. Concurrent computation FORESHOE
. . » Each process uses only local data
2. Communication -
» Each computation is asynchronous of other concurrent
3. Barrier synchronization computation
» Computation time may vary
Initial data Compute Input msgs Compute Input msgs
Initial data Compute Input msgs Compute Input msgs
Initial data Compute Input msgs Compute ‘ Input msgs
Initial data Compute Input msgs Compute Input msgs
( J ( J
| |
Superstep 0 Superstep 1
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Bulk Synchronous Parallel (BSP)

Series of supersteps
1. Concurrent computation
2. Communication

3. Barrier synchronization

End of superstep: Messages
received by all workers

Initial data Compute
Initial data Compute
Initial data Compute
Initial data Compute
(
|

Superstep 0

* Incoming messages are received at the start of a superstep
+ Messaging are sent by a process during a superstep
» Each process may send a message to 0 or more processes

» These messages become inputs for the next superstep

Start of next superstep:
Messages delivered to all workers

Input msgs Compute Input msgs
AN

Input msgs Compute Input msgs

Input msgs Compute Input msgs

Input msgs Compute Input msgs

|
Superstep 1
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Bulk Synchronous Parallel (BSP)

; * The next superstep does not begin until all messages
Sel’leS Of SuperStepS have been received
1 ] Concu rrent com putation  Barriers ensure no deadlock: no circular dependency can
be created
2. Communication « Provide an opportunity to checkpoint results for fault

tolerance

3. Barrier synchronization

— If there's a failure, restart computation from the last superstep

Initial data Compute Input msgs Compute Input msgs
Initial data Compute Input msgs Compute Input msgs
Initial data Compute Input msgs Compute Input msgs
Initial data Compute Input msgs Compute Input msgs
( J ( J
| |
Superstep 0 Superstep 1
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BSP Implementation: Apache Hama

 Hama: BSP framework on top of HDFS

— Provides automatic parallelization & distribution

— Uses Hadoop RPC
» Data is serialized with Google Protocol Buffers

— Zookeeper for coordination (Apache version of Google’s Chubby)
« Handles notifications for Barrier Sync

» Good for applications with data locality
— Matrices and graphs
— Algorithms that require a lot of iterations

hama.apache.org
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Hama programming (high-level)

* Pre-processing
— Define the number of peers for the job
— Split initial inputs for each of the peers to run their supersteps
— Framework assigns a unique ID to each worker (peer)

« Superstep: the worker function is a superstep
— getCurrentMessage() — input messages from previous superstep
— Compute — your code
— send(peer, msg)— send messages to a peer
— sync() — synchronize with other peers (barrier)

 File 1/0
— Keyl/value model used by Hadoop MapReduce & HBase &~ Google Bigtable
— readNext(key, value)
— write(key, value)
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For more information

 Architecture, examples, API

» Take a look at:
— Apache Hama project page
* http://hama.apache.org

— Hama BSP tutorial
* https://hama.apache.org/hama_bsp _tutorial.html

— Apache Hama Programming document

* http://bit.ly/1aiFbXS
http://people.apache.org/~tjungblut/downloads/hamadocs/ApacheHamaBSPProgrammingmodel_06.pdf
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Graph computing
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 Social links
— Friends
— Academic citations
— Music
— Movies

Graphs are common in computing

* Web pages

* Network connectivity
» Roads

- Disease outbreaks i
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Processing graphs on a large scale is hard

« Computation with graphs
— Poor locality of memory access
— Little work per vertex

* Distribution across machines
— Communication complexity
— Failure concerns

e Solutions

— Application-specific, custom solutions
— MapReduce or databases

* The <key,value> view of the world isn't the most natural for graphs
+ But require many iterations (and a lot of data movement)

— Single-computer libraries: limits scale
— Parallel libraries: do not address fault tolerance
— BSP: close but too general
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Pregel: a vertex-centric BS

Input: directed graph

A vertex is an object

« Each vertex uniquely identified with a name
* Each vertex has a modifiable value

Directed edges: links to other o
Associated with source vertex
« Each edge has a modifiable value

« Each edge has a target vertex identifier

10

bjects
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Pregel: computation

Computation: series of supersteps

— Same user-defined function runs on each vertex
* Receives messages sent from the previous superstep
« May modify the state of the vertex or of its outgoing edges
« Sends messages that will be received in the next superstep
— Typically to outgoing edges
— But can be sent to any known vertex
» May modify the graph topology

Each superstep ends with a 11 10
barrier (synchronization point) 1 \.
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Pregel: termination

* Initially, every vertex is in an active state

— Active vertices compute during a superstep /\'

* Each vertex may choose to deactivate _
itself by voting to halt Active
— The vertex has no more work to do _
— Will not be executed by Pregel :ﬁg:slgl tovr?;ﬁ
— UNLESS the vertex receives a message

* Then itis reactivated
» Will stay active until it votes to halt again

Inactive

* Algorithm terminates when all vertices are inactive and there are no \/
messages in transit Vertex

State Machine
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Pregel: output

Outputis the set of values output by the vertices

 Often a directed graph

— May be non-isomorphic to original since edges & vertices can be added or
deleted

* Or may be summary data
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Examples of graph computations

« Shortest path to a node
— Each iteration, a node sends the shortest distance received to all neighbors

» Cluster identification

— Each iteration: get info about clusters from neighbors
— Add myself

— Pass useful clusters to neighbors (e.g., within a certain depth or size)
* May combine related vertices
« Output is a smaller set of disconnected vertices representing clusters of interest

« Graph mining
— Traverse a graph and accumulate global statistics

- PageRank
— Each iteration: update web page ranks based on messages from incoming links
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Simple example: find the maximum value

Each vertex contains a value — we want to find the largest one

* In the first superstep:
— A vertex sends its value to its neighbors

* In each successive superstep:

— If a vertex learned of a larger value from its incoming messages,
it sends it to its neighbors

— Otherwise, it votes to halt
« Eventually, all vertices get the largest value

* When no vertices change in a superstep, the algorithm terminates
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Simple example: find the maximum value

_ 1.vertex value type;
Seml-pseudocode: 2.edge value type (none!)
3. message value type
class MaxValueVertex
: public Vertex<int, void, int> {
void Compute (Messagelterator *msgs) {
int maxv = GetValue () ;

for (; !msgs->Done(); msgs->Next()) VL find maximum value
maxv = max (msgs.Value (), maxv) ;

if (maxv > GetValue()) || (step == 0)) {
*MutableValue () = maxv;
OutEdgelterator out = GetOutEdgeIterator (), ]
for (; 'out.Done(); out.Next()) send maximum
sendMessageTo (out.Target () , maxv) value to all edges
} else

VoteToHalt () ;
}
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Simple example: find the maximum value

Superstep 0

Superstep 1

Superstep 0: Each vertex propagates its own value to connected vertices

Superstep 1: V, updates its value: 6 > 3
V3 updates its value: 6 > 1
V, and V, do not update so vote to halt

O Active vertex O Inactive vertex
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Simple example: find the maximum value

Superstep 0

Superstep 1

Superstep 2

Superstep 2: V, receives a message — becomes active
V3 updates its value: 6 > 2
V4, V,, and V5 do not update so vote to halt

O Active vertex O Inactive vertex
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Simple example: find the maximum value

Superstep 2

Superstep 3

Superstep 3: V, receives a message — becomes active

V3 receives a message — becomes active

No vertices update their value — all vote to halt
Done!

O Active vertex O Inactive vertex
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Summary: find the maximum value

Superstep 0

Superstep 1

Superstep 2

Superstep 3

O Active vertex O Inactive vertex
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Locality

* Vertices and edges remain on the machine that does the computation

* To run the same algorithm in MapReduce
— Requires chaining multiple MapReduce operations

— Entire graph state must be passed from Map to Reduce
... and again as input to the next Map
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Pregel API: Basic operations

A user subclasses a Vertex class

Methods:
— Compute (Messagelterator*): Executed per active vertex in each superstep
* Messagelterator identifies incoming messages from the previous superstep

— GetValue (): Get the current value of the vertex

— MutableValue () : Setthe value of the vertex

— GetOutEdgeIterator (): Get a list of outgoing edges
* .Target (): identify target vertex on an edge
* .GetValue (): getthe value of the edge
* .MutableValue (): setthe value of the edge

— SendMessageTo () : send a message to a vertex

* Any number of messages can be sent
» Ordering among messages is not guaranteed
* A message can be sent to any vertex (but our vertex needs to have its ID)
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Pregel APl. Special operations

Combiners

« Each message has an overhead — let’s reduce # of messages
— Many vertices are processed per worker (multi-threaded)
— Pregel can combine messages targeted to one vertex into one message

« Combiners are application specific
— Programmer subclasses a Combiner class and overrides Combine() method

* No guarantee on which messages will be combined

4 15
8 12
1 71
5 11
6 15
Combiner Combiner

Sums input messages Minimum value
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Pregel API: Special operations

Aggregators
* Handle global data

* A vertex can provide a value to an aggregator during a superstep
— Aggregator combines received values to one value
— Value is available to all vertices in the next superstep

» User subclasses an Aggregator class

« Examples
— Keep track of total edges in a graph
— Generate histograms of graph statistics
— Global flags: execute until some global condition is satisfied
— Election: find the minimum or maximum vertex

CS 417 © 2023 Paul Krzyzanow ski

28



Pregel API: Special operations

Topology modification

« Examples
— If we're computing a spanning tree: remove unneeded edges
— If we're clustering: combine vertices into one vertex

« Add/remove edges/vertices

* Modifications visible in the next superstep

CS 417 © 2023 Paul Krzyzanow ski
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Pregel Design
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Execution environment

« Many copies of the program

are started on a cluster of machines

* One copy becomes the master

— Will not be assigned a portion of the graph

— Responsible for coordination
— The rest will be workers

« Chubby is used as a name server for the cluster
— Master registers itself with the name service

— Workers contact the name service
to find the master

HEEEN HEEEN
HEEER 1111 HER
HEEEN HEEREN 1
HEEER 1111 (1]
HEEER HEEER HER
HEEEN HEEREN HRER
HEEER 1111 HER
1111 HEREN HERREN
-
Rack
4(3—80 computers |
Y
Cluster

1,000s to 10,000+ computers
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Partition assignment

* Master
— Determines # partitions in graph

— One or more partitions assigned to each worker
« Partition = set of vertices

 Default for N partitions: hash(vertex ID) mod N = worker
May deviate: e.g., place vertices representing the same web site in one partition
* Multiple partitions are assigned per worker: this improves load balancing

 Worker

— Responsible for its section(s) of the graph
— Each worker knows the vertex assignments of other workers
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Input assignment

» Master assigns parts of the input to each worker
— Data usually sits in GFS or Bigtable

* Input = set of records
— Record = vertex data and edges
— Assignment based on file boundaries

» Worker reads input
— If it belongs to vertices it manages, local data structures are updated
— Else worker sends messages to remote workers

« After data is loaded, all vertices are active
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Computation

» Master tells each worker to perform a superstep

* Worker:
— lterates through vertices (one thread per partition)
— Calls Compute() method for each active vertex
— Delivers messages from the previous superstep
— Outgoing messages
* Sent asynchronously
* Delivered before the end of the superstep

* When done
— worker tells master how many vertices will be active in the next superstep

« Computation done when no more active vertices in the cluster
— Master may instruct workers to save their portion of the graph

CS 417 © 2023 Paul Krzyzanow ski
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v

Compute
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Send messages

\’

Superstep done
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Handling failure

» Checkpointing
— Controlled by master ... every N supersteps

— Master asks a worker to checkpoint at the start of a superstep

+ Save state of partitions to persistent storage
— Vertex values, Edge values, Incoming messages

— Master is responsible for saving aggregator values

 Failure detection: master sends ping messages to workers
— If worker does not receive a ping within a time period = Worker terminates
— Ifthe master does not hear from a worker = Master marks worker as failed

 Restart: when failure is detected
— Master reassigns partitions to the current set of workers
— All workers reload partition state from most recent checkpoint
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Apache Giraph
— Initially created at Yahoo

— Used at LinkedIln & Facebook to analyze
the social graphs of users
» Facebook is the main contributor to Giraph

Pregel outside of Google

» Facebook analyzed 1 trilion edges via 200 machines in 4 minutes

— Runs under Hadoop MapReduce framework

* Runs as a Map-only job
+ Adds fault-tolerance to the master by using ZooKeeper for coordination

* Uses Java instead of C++

= Chubby

https://www.facebook.com/notes/facebook-engineering/scaling-apache-giraph-to-a-trillion-edges/10151617006153920
CS 417 © 2023 Paul Krzyzanow ski

&
®

(YN

\ o

&8

> 5



Conclusion

Vertex-centric approach to BSP

« Computation = set of supersteps
— Compute() called on each vertex per superstep
— Communication between supersteps: barrier synchronization

 Hides distribution from the programmer
— Framework creates lots of workers
— Distributes partitions among workers
— Reads graph input
— Handles message sending, receipt, and synchronization
— A programmer just has to think from the viewpoint of a vertex

» Checkpoint-based fault tolerance
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The End
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