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We discussed the designs of Bigtable and Cassandra. Now we will look at some of the 
highlights of Spanner, which is Google’s globally distributed database. It combines elements of 
Bigtable, clock synchronization, the two-phase commit protocol, strict two-phase locking, 
wound-wait concurrency control, multi-version concurrency control, and state machine 
replication. 

Bigtable and Spanner  

We recently looked at the architecture of Bigtable, which was designed to allow us to store 
vast amounts of data all structured as one really big table. 

Bigtable 

Bigtable gave us a single table that had rows and columns. It was essentially a two-
dimensional grid with a third dimension of time that gave us versions of objects in each cell. If 
you created multiple tables, the software did nothing to link them together like a relational 
database would. You would be responsible for all that, including all locking and distributed 
commit operations that would be needed to keep data consistent. This was tedious, difficult, 
and error-prone. 



Spanner 

panner is basically the evolution of Bigtable into a huge, distributed, multi-table database. We 
can look at Spanner as a collection of Bigtables. Unlike Bigtable’s eventual consistency model 
for replication, Spanner will provide consistent updates across multiple tables and replicas.  
 

Spanner architecture: data storage 

Let’s look at how Spanner is organized. Each table is broken up across groups of rows into a 
bunch of tablets. 
 
Tablets are stored on spanservers. You can think of them as similar to the tablet servers in 
Bigtable. Each spanserver holds multiple tablets. Note that these are just compute servers that 
access a distributed filesystem. 
 
Then we have a bunch of zones. A zone is just a collection of servers that can all run 
independently. Think of it as a datacenter. You can have thousands of spanservers sitting 
inside each zone. 
 
Coordinating the activity in a zone is the zonemaster. The zonemaster allocates data to 
spanservers. It tells each spanserver what it has to do and whether tablets need to be moved 
to different spanservers.  
 



Each zone has a location proxies. Location proxies are responsible for locating the spanservers 
that contain the needed data.  
 
Globally, outside of each individual zone, we have a universe master. It tracks the status of 
Spanner across multiple zones – that is, multiple data centers. 
 
Working alongside the universe master is a placement driver. This is a high-level allocator that 
manages the movement of data between different zones. 
 

Data storage hierarchy 

We can look at the hierarchy this way: 
 
The universe holds one or more databases. This is the collection of everything we have. A 
database - a single instance - holds one or more tables if it's just one table it's kind of similar in 
concept to Bigtable. The table contains rows and columns kind of like we saw in Bigtable. 
 
Each table is a collection of tablets, also called shards. Tablets are pieces of a table broken 
across row boundaries. For fault tolerance, tablets are replicated across multiple servers. 
Spanner uses Paxos, which is a fault-tolerant consensus protocol similar to Raft to do 
synchronous replication of data onto multiple servers. 
 



All the data inside a table is versioned so we have a timestamp for every version of the data. 
Any transactions that touch multiple shards or interact with different tables will use a two-
phase commit protocol.  
 
Spanner also has the concept of a directory, which is an unfortunate name since it has nothing 
to do with filesystem directories. A directory can be thought of as a bucket in a tablet — a set 
of contiguous keys that share a common prefix. This sounds a lot like a tablet in Bigtable. In 
Spanner, a tablet doesn’t necessarily hold a contiguous sorted set of rows like it does in 
Bigtable. Instead, a directory structure allows contiguous rows from different tables to be 
interleaved together to make some local join operations across those tables to be efficient. The 
directory is the unit of data movement. 
 

Transactions 

Unlike Bigtable — because Spanner was designed to be transactional and handle operations 
across multiple rows and across multiple tables — Spanner provides ACID semantics.  
 
To provide this model of consistency, it uses the two-phase commit protocol for distributed 
transactions using an elected transaction manager. To guarantee ACID semantics, one 
transaction must not interfere with the effects of another transaction if the transactions are 
running concurrently. Spanner uses strict two-phase locking to ensure that a transaction does 
not read or write data that is being used by another transaction. 
 



We saw how two-phase locking works. The transaction first acquires locks on the rows it will 
access. Acquiring all the needed locks is the growing phase. The transaction then does its 
work and releases the locks when it commits.  
 
In Spanner, before the transaction commits, it will first get a commit timestamp. The commit 
timestamp reflects the serialization order of transactions – their logical sequencing. This 
applies across all transactions across all systems globally. 
 
Completing thecommit means that each transaction makes its modifications permanent. The 
transaction then propagates its changes to all the replicas so they could be made permanent 
on the replicas during the commit. At this point, all the fields that the transaction is modifying 
are locked — so no one else can see those changes. When it’s finally done and all the 
replication is finished, then the transaction releases the locks and everyone can see the 
changes. 
 

Improving concurrency 

The problem with two-phase locking is it could be slow and reduce the amount of 
concurrency.  If we’re modifying a lot of rows of data, then nobody else will be able to access 
that data. 
 
 



Read-write transactions 
We've seen ways to improve concurrency. We can use separate read locks and write locks. 
Spanner does this for transactions that modify data (read-write transactions).  
 
If all we're doing is reading a data element and not modifying it there's no harm in having other 
transactions read the same data. You can have multiple read locks on the same data at any 
given time. If you’re writing a data element, a write lock gives you exclusive access to the data. 
 
Read and write locks have a blocking property. Read locks can block behind write locks: if a 
transaction is doing a write, it will have a write lock so nobody else can read that data. 
 
And similarly, write locks block behind read locks. If a transaction needs to modify data, it will 
have to wait until any transactions that are reading the data have finished reading and released 
the lock so they won’t see different versions of the data. 
 
Strict two-phase locking  
 
Spanner uses different forms of concurrency control based on what the transaction needs to 
do. If it’s modifying data, Spanner uses read-write locks and strict two-phase locking, which is 
a pessimistic approach to concurrency control.  
 
Wound-wait deadlock prevention 
 
To avoid deadlock in reading data, Spanner uses the wound-wait algorithm. With this 
algorithm, there is a chance the transaction would need to be aborted. 
 
Read-only transactions and snapshot reads 
 
For read-only transactions, Spanner takes advantage of the fact that each cell stores older 
versions of data, each with a timestamp of the transaction that modified it. This allows it to 
implement multi-version concurrency for read-only transactions. 
 
With multi-version concurrency, we can present a view of the database for any transaction the 
way it looked at a specific point in time. This makes long-running reads, such as searching 
through a really huge set of data non-disruptive. They don't hold up anything else – they are 
just reading versions of data as it existed at a particular point in time.  
 
Because a transaction is reading data before some point in time, all the data will be consistent. 
Note that we need good timestamps for this to work, which we will look at shortly. If a 
transaction defines itself as being read-only, it will be presented with versions of data that are 
no newer than the start time of the transaction. Snapshot isolation is the same as a read-only 
transaction except that the user can specify the point in time. 
 
To implement this, we need to generate commit timestamps that will allow us to have 
meaningful snapshots. 
 



Getting good commit timestamps 

To get useful commit timestamps we could use vector clocks. To use vector clocks, we pass 
along the server's current concept of time along with every message that we send to other 
servers and every receiver will have to update its concept of time based on the vector.  
 
A problem with vector timestamps is they're often not practical in large systems. A vector 
represents all the components that are involved in the transaction so if you're looking at having 
thousands of systems your vector is going to have thousands of elements in it and that 
becomes inefficient to store and move around.  
 
Moreover, if you're communicating with the system using something like HTML over HTTP 
(e.g., capturing website click data) that becomes even messier because now you must embed 
these potentially large vector timestamps inside HTTP transactions. If you're doing applications 
such as using phone call logging then you even have no place to even put these vector 
timestamps.  
 
What Spanner did was go against this common wisdom and use physical timestamps. When 
we looked at timestamps, we dismissed physical timestamps because you cannot do global 
time ordering because no two systems can be guaranteed to synchronize to the exact same 
time. 
 
Spanner provides a property of external consistency, also called linearizability to its 
transactions. With external consistency, the requirement is that if we a transactions T1 commits 



before another transaction T2 then transaction T1 must get a smaller timestamp than 
transaction T2.  
 
If T1 has a smaller timestamp than T2, then the commit order must match this timestamp order. 
The timestamps, in turn, are not logical clocks but refer to the physical time — referred to as 
wall time order. Wall time is the time you see on the clock on the wall — it's the real time. 
 

TrueTime API  

To implement external consistency, Spanner makes use of TrueTime via a TrueTime API.  
Keep in mind that we can never know the real global time consistently across servers. We 
cannot guarantee that we can synchronize the clock on every single server to the exact 
nanosecond. 
 
What Spanner does is define the global wall clock time.The wall clock time is the current time 
plus some interval of uncertainty. The TrueTime API — abbreviated as TT — doesn't give us a 
specific time. It doesn't tell us what the time really is but it gives us two times: the earliest time 
and the latest time that could possibly be right now. 
 
TT.now().earliest is the time that is guaranteed to be less than or equal to the current time and 
TT.now().latest is the timestamp that is guaranteed to be greater than or equal to the current 
time. TrueTime provides us with an interval of time and we want that interval to be small in 
order to minimize this range of uncertainty. 
 



 
To make that window as small as possible, every data center that runs Spanner – which is 
every Google data center — has both a GPS receiver and an atomic clock. The atomic clock is 
periodically synchronized from GPS receivers. This atomic clock provides fault tolerance in 
case the system cannot read the GPS receiver – or if the entire GPS system is jammed. By 
having the atomic clock at each data center, we don’t incur the latency of synchronizing from 
remote sources. 
 
All servers in Spanner periodically synchronize with these local time servers that, in turn, 
synchronize their time directly from the GPS receiver or atomic clock. 
 
Every spanserver knows what the timestamp’s amount of uncertainty is. We saw how we get 
with Christian's algorithm — when you synchronize from another server and know the network 
latency and the accuracy of the clock source, you can compute the error of the 
synchronization. The error also takes into account how long ago the time server last 
synchronized. TrueTime uses Marzullo’s algorithm, which was developed to choose an 
accurate time from multiple noisy time sources and account for errors. 
 
The TrueTime API provides us with that window of uncertainty. To make the window as small 
as possible, systems synchronize from highly accurate local time sources and typically 
synchronize approximately every 30 seconds. 
 
The clock uncertainty on a server is usually within about 10 milliseconds so TrueTime gives us 
an earliest time and the latest time and the difference between these two times is usually 
approximately 10 milliseconds. 
 

https://en.wikipedia.org/wiki/Marzullo%27s_algorithm


Commit wait 

Let's look at how commits work with the use of the TrueTime API. Remember that we don't 
know the exact time but we can wait out TrueTime’s region of uncertainty. We still take the 
same steps to commit.  
 
1. A transaction first acquires locks and does whatever work is needed for the transaction.  

2. Then the transaction gets a commit timestamp. This is the latest time: TT.now().latest. It's 
the latest time that it can possibly be right now. 

3. The next thing we do is a commit wait. A commit wait means we do nothing but wait until 
we're sure that that commit timestamp is now sometime in the past. We do this by waiting 
until TT.now().earliest has passed the timestamp we recorded earlier. The average worst-
case wait time is going to be around 10 milliseconds, so we really don't have to wait all that 
long. 

4. When that's done, we do the normal commit process and then release the locks. Now 
we're done with the transaction. 

 



Integrate replication 

Spanner integrates replication because we need fault tolerance. It goes through the same 
steps we discussed previously: we acquire all the locks we need and do the work for the 
transaction. When the work is done, we get the commit timestamp. This is the timestamp of 
the latest time that it currently can be. 
 
Now we prepare for replication since we have no more changes to the data since we are ready 
to commit. Replication uses a consensus protocol for fault tolerance. Spanner uses Paxos but 
we can do the same thing with Raft state machine replication. 
 
The replication protocol ensures that all the replicas have the changes that we made. We also 
send the commit timestamp to each replica so they can properly version all the data that each 
replica is modifying. 
 
When the replication is complete, we have all the replicas including ourselves do a commit wait 
in parallel. The commit wait will delay the commit until the timestamp that we were given for 
the commit is definitely in the past.  
 
When that's done, we finish our commit, release our locks and we're done with the transaction. 
 



Summary 

Features 

Spanner is a huge-scale semi-relational database made of tables. Unlike Bigtable, it supports 
multiple tables and users can apply SQL queries on these tables. 
 
Spanner gives us an externally consistent set of distributed transactions so anyone anywhere 
in the world who looks at the database sees a consistent view of the database even if they are 
doing long-running searches — because each transaction is always looking at a certain point in 
time. The transaction sees data that was valid when the transaction started so it will not see 
any later changes.  
 
Because of that, users don't have to try to deal with the problems of eventual consistency 
models. They always see consistent data. To support this, Spanner is a multiversion database: 
each record in every row and column across all tables is a cell that contains multiple versions 
of timestamped data.  
 
Spanner also supports synchronous replication so all those tables can be replicated across 
multiple systems. They are replicated in a way where no one will access inconsistent versions 
of data.  
 



Deployments 

Spanner is designed to scale to support millions of machines and hundreds of data centers. 
It's used in various services within Google. For instance, it’s used in F1, which is the internal 
system behind Google's AdWords platform. It may also be used in Gmail and Google search 
and many other services. Google just hasn't disclosed exactly where it is deployed. 
 

Are we breaking the rules? 

In some ways, Spanner looks too good to be true. It provides us with consistent global time 
ordering of transactions, and yet we know systems cannot have globally synchronized clocks.  
But what we can do is synchronize the clocks closely enough so that we can wait to be sure 
that we have a particular time that has passed. Spanner simply waits until the transaction 
timestamp is definitely in the past thus creates the appearance of global time ordering.  
 
We also have to consider the CAP theorem, which states that we cannot offer both 
consistency and availability when partitions may occur. In some ways, it seems like Spanner is 
breaking the rules because it looks like it's giving us a highly available system that also is 
completely consistent. 
 
In reality, Spanner is a CP system. It gives us consistency above everything else. If there is a 
partition, Spanner chooses consistency over availability. Replication and commits will be 
delayed. The eventual consistency model (AP) became popular because we specifically did not 
want to wait in these circumstances. We wanted to prioritize high availability over consistency. 



 
We can argue that we don't get true high availability with Spanner. But with the design of data 
centers in the Google environment, along with the redundant networks that connect data 
centers together, partitions are rare. Google’s data centers connect through Google’s private 
global network and do not rely on the worldwide public Internet. Every data center has at least 
three independent fiber connections to other data centers and there's a lot of redundancy 
inside each data center. 
 
In practice, partitions are pretty rare in this environment. They account for approximately 8% of 
all failures of Spanner. So, partitions do occur and you have to design for them. When they 
occur, transactions will wait and consistency will win out over availability. Users feel like they 
get both consistency and high availability because partitions hardly ever occur. 
 

Spanner conclusion 

To conclude, Spanner provides a system where ACID semantics are not sacrificed. 
Programmers can really feel like they're using a traditional database. They get all the 
consistency they expect in a traditional database. 
 
Life gets easy for programmers because they don't have to worry about accessing inconsistent 
data. They also don't have to program custom own solutions to deal with unwanted eventual 
consistency. 
 



Wide-area distributed transactions are built into the architecture of the system. Bigtable didn't 
support distributed transactions. It supported single row transactions and programmers had to 
write their own if they wanted consistency for transactions across multiple rows or tables. 
 
Spanner supports this and programmers don't have to worry about getting a two-phase 
commit protocol or concurrency control mechanisms implemented correctly. Clock 
synchronization and inconsistencies are handled automatically by the framework, giving users 
a property of external consistency – that transaction timestamps reflect real-time ordering. 
 
 
 

The End. 

 


