
CS 417 – DISTRIBUTED SYSTEMS

Paul Krzyzanowski

Week 9: Distributed Databases
 Part 2: Cassandra

© 2023 Paul Krzyzanowski. No part of this
content may be reproduced or reposted in
whole or in part in any manner without the
permission of the copyright owner.

Cassandra
• Distributed, customizable, eventually-consistent NoSQL database

• Originated at Facebook in 2008
– Currently an Apache open-source project
– ACID relational database systems were too slow
– CAP theorem: strong consistency → availability suffers
• Performance also suffers (e.g., locking, running commit protocols)

– Go with an eventually consistent model
– Built as a combination of Amazon Dynamo DHT + Google Bigtable

CS 417 © 2023 Paul Krzyzanowski 2

SQL vs. NoSQL databases

CS 417 © 2023 Paul Krzyzanowski 3

User ID Name Address City State Order ID Customer Amount Item Item ID Item
name Price

SQL database
• Tables with predefined fields, fields that reference other tables (foreign keys)
• ACID semantics

row key = user

user=user1 key1=value key2=value key3=value

user=user2 key1=value

user=user3 key1=value key3=value key4=value key5=value key6=value

NoSQL database
• Wide-column database: dynamically add columns per row – potentially unlimited amount
• No foreign keys and no integrity checking or locking if a cell contains a key for another table
• Eventually-consistent semantics

Design Goals
• High availability – no single point of failure - no central coordinator

• Low latency

• Run on commodity hardware

• Linear performance increase with additional nodes

• Tunable consistency: Define replication # and policy

• Key-oriented queries

• Flexible data model: row can have different columns with different data types

• SQL-like query language (CQL - Cassandra Query Language)

CS 417 © 2023 Paul Krzyzanowski 4

Server model

CS 417 © 2023 Paul Krzyzanowski 5

Machine hierarchy

CS 417 © 2023 Paul Krzyzanowski 6

Cluster

Datacenter Datacenter

Rack

…

Rack Rack Rack… …

N
od

e

N
od

e

N
od

e …

N
od

e

N
od

e

N
od

e …

N
od

e

N
od

e

N
od

e …

N
od

e

N
od

e

N
od

e …

Machine hierarchy
• Cluster
– Collection of machines that run Cassandra
– Nodes are arranged in a logical ring (like Chord/Dynamo) and data is replicated

• Datacenter
– Machines in one location (data center)

• Rack
– Machines in one rack (low latency – single switch connection)

• Node
– Individual machine

CS 417 © 2023 Paul Krzyzanowski 7

Data Model

CS 417 © 2023 Paul Krzyzanowski 8

CS 417 © 2023 Paul Krzyzanowski 9

Data Hierarchy

Instance of a database

Collection of rows

Set of columns with a
primary key for each row

Keyspace

Table (Column Family)

Row

Column { key, value, timestamp }

Data hierarchy: Column
Column: Fundamental unit of storage

{ name, value, timestamp }
– Each column has a name (key) that can be queried for a value
• Data types (>20) include alphabetic, numeric, blob, time, set, map

– Timestamp enables conflict resolution among replicas
• Usually created by the client – synchronized clocks assumed

– Columns can also be given an optional expiration
timestamp (time to live)

CS 417 © 2023 Paul Krzyzanowski 10

Column key

Column value

Timestamp

Column

Time to Live

Data hierarchy: Row
Row: Ordered collection of columns identified by a row key
– Each row can have a different – and almost unlimited – number of columns
– All data for a row must fit within a single node
– Columns are often sparse – the names can be used to store values
• Each row can contain an unlimited number of columns as needed
• E.g., "visited_url" could be a column name; "time_of_visit" could be a value

CS 417 © 2023 Paul Krzyzanowski 11

Column Column Column

Primary
key

Column key

Column value

Timestamp

Column key

Column value

Timestamp

Column key

Column value

Timestamp

Ro
w …

Data hierarchy: Row Key
Keys are columns that are identified as keys when the table is created

• A row is uniquely identified by a primary key
– This is the name of a single column
– or compound key = list of columns = { partition key and clustering key(s) }

• Partition key: used to find the node containing the row of data
– Partition key hashed to determine the machine that stores the data
– Partition key used to distribute data across machines in the cluster
– Composite key: you can specify multiple column keys to be the partition key: hash(key1, key2, …)
• Allows you to control which rows will be stored on the same machine (efficient access) or which get distributed

among available node in the DHT (spread the data evenly across the cluster)

• Clustering key(s): sorts data within the node
– Responsible for sorting data within each partition (portion of a table on one node)
– Rows in each table within a partition are sorted by the clustering (column) keys
– The sort order is in the sequence that the column keys are listed
– Picking the right set of keys can enable efficient access to related rows

CS 417 © 2023 Paul Krzyzanowski 12

Row Key

CS 417 © 2023 Paul Krzyzanowski 13

Uniquely identifies a rowPrimary key

Single column

Compound key

Partition key

OR

Clustering key = { key1, key2, … }

Composite key = { key1, key2, … }

key1OR

AND

hash(partition key) identifies node that stores the row data

Server
Sorting sequence

Data hierarchy: Table

CS 417 © 2023 Paul Krzyzanowski 14

Table (column family): container for rows of data
– Partition key(s) uniquely identifies a row
– Each row can have different columns – essentially unlimited
• Can add columns during runtime

Column Column Column Column

Column Column Column Column Column Column

Column Column Column

⋮ ⋮

Clustering key 1 Clustering key 2

Column Column Column Column Column

Partition key

Primary key

Note: Cassandra used to
call this a column family
(and you'll see this in many
of the papers). They
avoided the term table to
distinguish this from a
relational database with its
fixed columns. More
recently, they stopped
using column family and
started to use table.

Data hierarchy: Table (column family)
• Tables are not related
– Relational databases support foreign keys and join operations – not Cassandra

• A table may be distributed among multiple nodes
– Based on hash(partition_key)
– The set of rows from that table stored on each node defines a partition

• Table partitions are stored in separate files
– A partition will usually be composed of several files

CS 417 © 2023 Paul Krzyzanowski 15

Data hierarchy: Keyspace
Keyspace: An instance of a Cassandra database
– Container of tables
– Defines
• Replication factor: # copies
• Replica placement strategy: defines where replicas go
• Set of tables

CS 417 © 2023 Paul Krzyzanowski 16

Data Storage

CS 417 © 2023 Paul Krzyzanowski 17

Storage/query model
• A client request can go to any Cassandra node
– That node will act as a coordinator for that request
– Communication uses Apache Thrift RPC

• Dynamo/Chord style distributed hash table
– Systems arranged in a logical ring –

each node responsible for a hash range
– Coordinator hashes the partition key to identify the node
– Virtual nodes, vnodes (like Dynamo)
• Each node can own a many hash ranges
• Makes it easy to alleviate hotspots and give more vnodes to more powerful nodes

– Replicas are found by following the ring clockwise

CS 417 © 2023 Paul Krzyzanowski 18

Client request

Request
coordinator

Request

Write operations
A write can take place at any node

• Data first written to a commit log – then the write may be acknowledged
– This is a crash recovery mechanism

• Data added to memtable at the node (memory-based table)
– Portion of the table that's stored in memory
– Periodically, or if the memtable becomes full, the memtable is written to an SSTable

(sorted string table, similar to that used in Bigtable) disk structure
– Table partition = set of SSTables for that table on the node
– If there are multiple identical rows in the memtable, only the most recent is written
– The commit log is purged once the data is written

CS 417 © 2023 Paul Krzyzanowski 19

Read operations
Need to combine results from memtable and possibly multiple SSTables

• Check Bloom Filter for each SSTable
– Efficient hash-based structure that tells you if data might be in the table or is

definitely not in the table

• If the data might be in an SSTable
– Check the key cache for an index entry to find & read the block of data
– Search partition summary to find the approximate location of the data
• Do a sequential read to find the data

CS 417 © 2023 Paul Krzyzanowski 20

Replication
Data can be replicated onto multiple nodes

• User defines amount of replication
– Replication factor, N: # copies
– Placement strategy: defines where replicas go (rack-aware, datacenter-

aware)

• Tunable consistency
– User defines # of responses before write is acknowledged
• W = number of nodes to block for writes
• R = number of nodes to block for reads

– Options:
no response from servers, one success, quorum (majority), or all responses

CS 417 © 2023 Paul Krzyzanowski 21

Replication – Conflicts & dead nodes
• Replica reconciliation – what happens when there are conflicts?
– Not like Dynamo's vector clocks
– Last write wins model where every mutation is timestamped (including

deletes) and then the latest version of data is the "winning" value

• Dead nodes
– Coordinator implements Hinted Handoff
– Stores a "hint" about dead replicas
• Location of replica
• Version information
• Data being written

– After a node discovers that a node for which it has hints recovered, it sends
the data to that node

CS 417 © 2023 Paul Krzyzanowski 22

Where is Cassandra used?
Tons of places (the list may change!) – almost 7,000 companies
• Apple: over 160,000 Cassandra nodes across 1,000+ clusters – 100 petabytes
• Huawei – over 30,000 instances across 300+ clusters
• Netflix – over 10,000 instances across 100+ clusters – 6 petabytes of data
– back-end DB for streaming – over 1 trillion requests per day

• Discord for storing messages – over 120M/day
– All chat history stored forever (but Discord migrated from Cassandra to ScyllaDB in 2023)

• Uber for storing data for live model predictions
– Each car & user sends location data every 30 seconds
– Over a million writes per second
– Over 20 clusters & 300 machines (6 years ago – more now)

• Also
– Adobe, American Express, AT&T, eBay, HBO, Home Depot, Facebook, PayPal, Verizon, Target, Visa,

Salesforce, Palantir, Spotify, Weather Channel, and many more
CS 417 © 2023 Paul Krzyzanowski 23

Cassandra downsides
• Not a relational database: no ACID consistency, no locking, no join operations
– Designed to make it efficient to query data from a single partition & single node – not to

gather and merge data from the cluster

• The ordering of keys is defined when the table is created

• Data for a single partition (e.g., partitioned table) must fit within one node

• Timestamps may mess up consistency & create ambiguity
– Concurrent modifications to a single table may be treated as a tie if they have the same

timestamp

CS 417 © 2023 Paul Krzyzanowski 24

The End

25CS 417 © 2023 Paul Krzyzanowski

References
• Apache Project, Cassandra Documentation.
• Google Cloud, Cloud Bigtable for Cassandra Users: good architectural comparison between Bigtable & Cassandra
• eBay, Cassandra Data Modeling Best Practices, Part 1.
• Jeff Carpenter, Eben Hewitt, Cassandra: The Definitive Guide, 2nd Edition, Chapter 4. The Cassandra Query Language, O'Reilly

• TutorialsPoint, Cassandra Data Model.
• Arin Sarkissian, WTF is a SuperColumn?, PhatDuckk – Digg engineering
• Cassandra Explained with concepts of Distributed Hash Tables and Consistent Hashing
• DataStax, About Hinted Handoff Writes, DataStax Documentation
• Jonathan Ellis, Facebook’s Cassandra paper, annotated and compared to Apache Cassandra 2.0

• Brief summaries (student reports)
– Maitrey J. Soparia, Apache Cassandra (Distributed Hash Table).
– Vaibhav Shankar, Cassandra DHT-based storage system. (short but not totally accurate)

• About partition keys
– Piyush Rana, Cassandra Data Modeling: Primary, Clustering, Partition, and Compound Keys, Dzone, October 19, 2016
– Baeldung, Cassandra Partition Key, Composite Key, and Clustering Key, Oct 9, 2021.
– Christopher Sherman, Designing a Cassandra Data Model, April 26, 2017

CS 417 © 2023 Paul Krzyzanowski 26

https://cassandra.apache.org/doc/latest/cassandra/architecture/overview.html
https://cloud.google.com/architecture/cloud-bigtable-for-cassandra-users
https://tech.ebayinc.com/engineering/cassandra-data-modeling-best-practices-part-1/
https://www.oreilly.com/library/view/cassandra-the-definitive/9781491933657/ch04.html
https://www.tutorialspoint.com/cassandra/cassandra_data_model.htm
https://arin.me/post/40054651676/wtf-is-a-supercolumn-cassandra-data-model
https://medium.com/@abhiruchigupta16/cassandra-explained-from-a-beginners-perspective-bb286b4d50b2
https://docs.datastax.com/en/cassandra-oss/2.1/cassandra/dml/dml_about_hh_c.html
https://cassandra.apache.org/doc/4.0/cassandra/cql/ddl.html
http://salsahpc.indiana.edu/b534projects/sites/default/files/public/1_Cassandra%20Distributed%20Hash%20Table_Soparia%2C%20Maitrey%20Jagdish.pdf
http://salsahpc.indiana.edu/b534projects/sites/default/files/public/1_Cassandra_Shankar,%20Vaibhav.pdf
https://dzone.com/articles/cassandra-data-modeling-primary-clustering-partiti
https://www.baeldung.com/cassandra-keys
https://shermandigital.com/blog/designing-a-cassandra-data-model/

