CS 417 - DISTRIBUTED SYSTEMS

Week 9: Distributed Databases
Part 1: Google Bigtable

© 2023 Paul Krzyzanowski. No part of this
content may be reproduced or reposted in

PaUI Krzyzan OWS kl whole or in part in any manner without the

permission of the copyright owner.

Bigtable

 Highly available distributed storage

* Built with semi-structured data in mind
— URLs: content, metadata, links, anchors, page rank
— User data: preferences, account info, recent queries
— Geography: roads, satellite images,

points of interest, annotations

 Large scale

— Petabytes of data across 100s of thousands of servers
— Billions of URLs with many versions per page

— Hundreds of millions of users
— Thousands of queries per second

— 100TB+ satellite image data

CS 417 © 2023 Paul Krzyzanowski

Bigtable: A Distributed Storage System for Structured Data

Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach
Mike Burrows, Tushar Chandra, Andrew Fikes, Robert E. Gruber
{fayjeff sanjay,wilsomh, kerr.m3b.sushar fikes.grober } @ google.com

Google, Inc.

Abstract

Bigtable is a distributed storage system for managing
structured data that is designed 10 scale to a very large
size: petabytes of data across thousands of commodity
servers. Many projects 2t Google stare data in Bigtable,
including web indexing, Google Earth, and Google Fi-
nance. These applications place very different demands
on Bigtable, both in terms of data size (from URLs to
web pages to satellite imagery) and latency requirements
(from backend bulk processing 10 real-time data serving).
Despite these varied demands, Bigtable has successfully
provided a flexible, high-performance solution foe all of
these Google products. In this paper we describe the sim-
ple data mode] provided by Bigtable, which gives clients
dynamic control over data layout and format, and we de-
scribe the design and implementation of Bigtable.

1 Introduction

Over the last two and a half years we have designed,
implemented, and deployed a distributed storage system
for managing structured data st Google called Bigtable.
Bigtable is designed 10 relisbly scale to petabytes of
data and thousands of machines. Bigtable has achicved
several goals: wide applicability, scalability, high per-
formance, and high mvailability. Bigtable is used by
more than sixty Google products and projects, inclsd-
ing Google Analytics, Google Finance, Orkut, Person-
alized Search, Wrisely, and Google Earth, These prod-
wets use Bigtable for a variety of demanding workloads,
which range from throughput-oricnted batch-processing
Jobs to latency-sensitive serving of data 10 end users.
The Bigtable clusters used by these products span a wide
range of configurations, from a handful to thousands of
servers, and stare up to several hundred terabytes of data.

In many ways, Bigtable resembles a database: it shares
many implementation strategies with databases. Paral-
lel datab: [14] and mai y databases [13] have

l To appear in OSDI 2006

achieved scalability and high performance, but Bigtable
provides a different interface than such systems. Bigtable
does not support a full relational data model; instead, it
provides clients with a simple data model that supports
dynamic control over data layout and format, and al-
lows clients to reason about the locality properties of the
data represcnted in the underlying storage. Data is in-
dexed using row and column names that can be arbitrary
strings. Bigtable also treats data as uninterpreted strings,
akhough clients often serialize various forms of strac-
tured and semi-structured data into these strings. Clicats
can control the Jocality of their data through carcful
choices in their schemas. Finally, Bigtable schema pa-
rameters let clients dynamically control whether to serve
daea out of memory or from disk
Section 2 describes the data model in more detadl, and
Section 3 provides an overview of the client APL. Sec-
tion 4 briefly describes the underlying Google infrastruc-
ture on which Bigtable depends. Section § describes the
of the Bigtable imp and Sec-
tion 6 describes some of the refinements that we made
to impeove Bigtable's performance, Section 7 provides
of Bigtable's perf We describe
several examples of how Bigtable is used at Google
in Section 8, and discuss some lessons we learned in
designing and supporting Bigtable in Section 9. Fi-
nally, Section 10 describes relwed work, and Section 11
presents our conclusions.

2 Data Model

A Bigtable is a sparse, distributed, persistent multi-
dimensional sorted map. The map is indexed by a row
key, cobamn key, and a timestamp; each value in the map
is an uninterpeeted array of bytes.

(row:string, column:string, time:int64) — string

Uses

At Google, used for:
— Google Analytics
— Google Finance
— Personalized search
— Blogger.com
— Google Code hosting
— YouTube
— Gmaill
— Google Earth & Google Maps
— Dozens of others... over sixty products

CS 417 © 2023 Paul Krzyzanowski 3

A big table

Bigtable is NOT a relational database

Bigtable appears as a large table
“A Bigtable is a sparse, distributed, persistent multidimensional sorted map”*

columns
rows
“language:” “contents:”
com.aaa EN <IDOCTYPE html
PUBLIC...
3 com.chn.wWww EN <IDOCTYPE HTML
15 PUBLIC...
n
com.cnn.www/TECH EN <IDOCTYPE
HTML>...
v com.weather EN <!IDOCTYPE
HTML>...

*Bigtable: OSDI 2006
Web table example igtable

CS 417 © 2023 Paul Krzyzanowski 4

Table Model

(row, column, timestamp) — cell contents
— Contents are arbitrary strings (arrays of bytes)

columns
rows
“language:” “contents:”
com.aaa EN . Versions
5 com.cnn.www EN ——— et E
D <!DOCTYPE html... e‘t 4
_g 7
n com.cnn.www/TECH EN DOCTYPE himi <t
! | 7
v com.weather EN <« t,
<!DOCTYPE html... ‘t15

Web table example

CS 417 © 2023 Paul Krzyzanowski

Columns and Column Families

Column Family = group of related columns = basic unit of data access

— Data in a column family is typically of the same type
— Implementation of Bigtable compresses data in the same column family

» Operations
— (1) Create column family = this is an admin task done when the table is created
— (2) Create a column and store data within the family = this can be done anytime
» There will typically be a small number of column families
— < hundreds of column families

— A table may have an unlimited # of columns within a column family: often sparsely populated

» Columns are identified by family:qualifier

CS 417 © 2023 Paul Krzyzanowski 6

Column Families: example

Three column

families

— “language:” — language for the web page
— “contents:” — contents of the web page

— “anchor:” — contains text of anchors that reference this page
* www.cnn.comn is referenced by Sports lllustrated (cnnsi.com) and My-Look (mlook.ca)

* The value of (“

sorted

com.cnn.www’,

com.aaa

com.chn.www

com.cnn.www/TECH

com.weather

anchor:cnnsi.com”) is “CNN”, the reference text from cnnsi.com.

Column family anchor

A

[

\

“language:” “contents:” anchor:cnnsi.com anchor:mylook.ca
EN <IDOCTYPE html
PUBLIC...
EN <IDOCTYPE HTML “CNN?” “CNN.com”
PUBLIC...
EN <IDOCTYPE
HTML>...
EN <IDOCTYPE
HTML>...

CS 417 © 2023 Paul Krzyzanowski

Tables & Tablets

A table is partitioned dynamically by rows into one or more tablets

- Tablet = range of contiguous, sorted rows in a table
— Unit of distribution and load balancing

— Nearby rows will usually be served by the same server
« Accessing nearby rows requires communication with a small # of machines

— You need to choose row keys carefully to ensure good locality
* E.g., reverse domain names - so the the same domains are adjacent:
com.cnn.www instead of www.cnn.com

* Row operations are atomic

CS 417 © 2023 Paul Krzyzanowski 8

Table splitting

* A table starts as one tablet

* As it grows, it is split into multiple tablets
— Approximate size: 100-200 MB per tablet by default

“language:” “contents:”
com.aaa EN <IDOCTYPE html
PUBLIC...
com.cnn.www EN <IDOCTYPE HTML
PUBLIC...
com.cnn.www/TECH EN <IDOCTYPE
HTML>...
com.weather EN <!DOCTYPE
HTML>...

tablet

CS 417 © 2023 Paul Krzyzanowski 9

Splitting a tablet

“language:” “contents:”
com.aaa EN <IDOCTYPE html
PUBLIC...
com.cnn.wWww EN <IDOCTYPE HTML
PUBLIC...
com.cnn.www/TECH EN <IDOCTYPE
HTML>...
Split
com.weather EN <!DOCTYPE
HTML>...
com.wikipedia EN <!DOCTYPE
HTML>...
com.zcorp EN <IDOCTYPE
HTML>...
com.zoom EN <!IDOCTYPE
HTML>...

CS 417 © 2023 Paul Krzyzanowski 10

Timestamped versions

» Each column may contain multiple versions of data

* \ersion indexed by a 64-bit timestamp
— Real time or assigned by client

* Per-column-family settings for garbage collection
— Keep only latest n versions
— Or keep only versions written since time t

* Retrieve most recent version if no version specified
— If specified, return version where timestamp < requested time

CS 417 © 2023 Paul Krzyzanowski 11

API: Operations on Bigtable

* Create/delete tables & column families

Change cluster, table, and column family metadata (e.g., access control rights)

Write or delete values in cells

Read values from specific rows

lterate over a subset of data in a table
— All columns within a column family
— Multiple column families
* E.g., regular expressions, such as anchor:*.cnn.com
— Multiple timestamps
— Adjacent rows

Atomic read-modify-write row operations

CS 417 © 2023 Paul Krzyzanowski 12

Implementation

CS 417 © 2023 Paul Krzyzanowski

13

One master, many tablet servers

1. Many tablet servers - coordinate requests to tablets
— Can be added or removed dynamically
— Each manages a set of tablets (typically 10-1,000 tablets/server)
— Handles read/write requests to tablets
— Splits tablets when too large

2. One master server //

— Assigns tablets to tablet server =
— Balances tablet server load =
— Garbage collection of unneeded SSTable files =
— Schema changes (table & column family creation) &

3. Client library Client

— Client data does not move through the master

— Clients communicate directly with tablet servers for reads/writes

CS 417 © 2023 Paul Krzyzanowski

Implementation: Tablets Stored in SSTable

Google SSTable (Sorted String Table)
— Internal file format optimized for streaming I/O and storing <key,value> data

— Sequence of 64 KB blocks - each block is sorted by rows
» Each row contains a list of {column key, timestamp, value} entries
— Index at end of the file and loaded into memory when the table is opened

— Memory or disk-based; indexes are cached in memory

— Provides a persistent, ordered, immutable map from keys to values

— Append-only structure

« If there are additions/deletions/changes to rows
* New SSTables are written out with the deleted data removed

» Periodic compaction merges SSTables and removes old retired ones

For a description of SSTable please see https://www.igvita.com/2012/02/06/sstable-and-log-structured-storage-leveldb/

CS 417 © 2023 Paul Krzyzanowski 15

https://www.igvita.com/2012/02/06/sstable-and-log-structured-storage-leveldb/

Implementation: Tablets Stored in SSTable

Block O Block 1 Block 2 Block n
File offset File offset File offset File offset
First row rowkey 1 First row rowkey 5 First row rowkey 11 First row rowkey 88
Last row rowkey 4 Last row rowkey 10 Last row rowkey 14 Last row rowkey 92
col key timestamp value
rowkey_1 col key timestamp value
col key timestamp value
col key timestamp value
rowkey_2 col key timestamp value
col key timestamp value
rowkey_3 col key timestamp value
rowkey_4 col key timestamp value
Tablet file = SSTable: Block0 @ Block 1 Block 2 Block n Block index

CS 417 © 2023 Paul Krzyzanowski 16

Implementation: Supporting Services

Chubby
— Ensure there is only one active master
— Store bootstrap location of Bigtable data
— Discover tablet servers
— Store Bigtable schema information

— Store access control lists

Cluster management system
— For scheduling jobs, monitoring health, dealing with failures

CS 417 © 2023 Paul Krzyzanowski 17

Implementation: Supporting Services

GFS
— Stores all the tablet files

Chubby is used to:
— Enforce single master
— Store bootstrap info
— Discover tablet servers

— Store Bigtable schema
— Store ACLs

* Cluster management system
— For scheduling jobs, monitoring health, dealing with failures

CS 417 © 2023 Paul Krzyzanowski 18

Implementation: METADATA table

Three-level hierarchy

— Balanced B+ tree

— Root tablet contains location of all tablets in a special METADATA table
— Row key of METADATA table contains the location of each tablet

f(table_ID, end_row) = location of tablet N sesee
Other METADATA A _____ L =
tablets - 1o
e < s IS
Root tablet ~ /po==----------- P
(1t METADATA tablet) F===== e 5 -

passss B .

Chubby file —> - | 1 \ [T
--------------- X eseee seees| =
b e\ e 5
\;33333 o pezszs wszzsd O
Stores locationof ~ beeeees RN R S =
the root tablet 8
-

CS 417 © 2023 Paul Krzyzanowski 19

Startup: server discovery & allocation

When a tablet server starts:

* Creates a unique file name in a Chubby "servers" directory

When master starts:

» Grabs a unique master lock in Chubby
« Scans the servers directory to find live tablet servers
« Contacts each tablet server to discover tablet—server mapping

* Scans the METADATA table to learn the full set of tablets

CS 417 © 2023 Paul Krzyzanowski 20

Fault Tolerance

Fault tolerance is provided by GFS & Chubby

 Dead tablet server

— Master is responsible for detecting when a tablet server is not working
* Asks tablet server for status of its lock
* If the tablet server cannot be reached or has lost its lock
— Master attempts to grab that server’s lock
— If it succeeds, then the tablet server is dead or cannot reach Chubby
— Master moves tablets that were assigned to that server into an unassigned state

* Dead master
— Master Kills itself when its Chubby lease expires
— Cluster management system detects a non-responding master

» Chubby: designed for fault tolerance (5-way state machine replication)

» GFS: stores underlying data — designed for n-way replication

CS 417 © 2023 Paul Krzyzanowski 21

Bigtable Replication

» Each table can be configured for replication to multiple Bigtable clusters
in different data centers

* Bigtable uses an eventual consistency model for replication
— Replicas may be updated asynchronously

CS 417 © 2023 Paul Krzyzanowski 22

Sample applications

Google Analytics

— Raw Click Table (~200 TB)

* Row for each end-user session
« Row name: {website name and time of session}
— Sessions that visit the same web site are sorted & contiguous

— Summary Table (~20 TB)

* Contains various summaries for each crawled website
« Generated from the Raw Click table via periodic MapReduce jobs

CS 417 © 2023 Paul Krzyzanowski 23

Sample applications

Personalized Search

* One Bigtable row per user (unique user ID)

» Column family per type of action
— E.g., column family for web queries (your entire search history!)

- Bigtable timestamp for each element identifies when the event occurred

* Uses MapReduce over Bigtable to personalize live search results

CS 417 © 2023 Paul Krzyzanowski 24

Sample applications

» Google Maps / Google Earth
— Preprocessing
- Table for raw imagery (~70 TB)
« Each row corresponds to a single geographic segment
* Rows are named to ensure that adjacent segments are near each other

« Column family: keep track of sources of data per segment
(this is a large # of columns — one for each raw data image — but sparse)

— MapReduce used to preprocess data

— Serving
» Table to index data stored in GFS
- Small (~500 GB) but serves tens of thousands of queries with low latency

CS 417 © 2023 Paul Krzyzanowski 25

Bigtable outside of Google

Apache HBase AP ACHE

— Built on the Bigtable design HBASE

— Small differences (may disappear)
« Access control not enforced per column family
Millisecond vs. microsecond timestamps
No client script execution to process stored data
Built to use HDFS or any other file system
No support for memory mapped tablets
Improved fault tolerance with multiple masters on standby

CS 417 © 2023 Paul Krzyzanowski 26

Bigtable vs. Amazon Dynamo

» Dynamo targets apps that only need key/value access with a primary
focus on high availability

— Dynamo: key-value store versus Bigtable’s column-store
(column families and columns within them for each key that's accessed)

— Bigtable: distributed DB built on GFS
— Dynamo: distributed hash table
— Bigtable supports iterating over rows in a table

— Dynamo updates are not rejected even during network partitions or server
failures

CS 417 © 2023 Paul Krzyzanowski 27

The End

CS 417 © 2023 Paul Krzyzanowski

28

