
CS 417 – DISTRIBUTED SYSTEMS

Paul Krzyzanowski

Week 8: Distributed Transactions
Part 2: Three-Phase Commit
and the CAP Theorem

© 2023 Paul Krzyzanowski. No part of this
content may be reproduced or reposted in
whole or in part in any manner without the
permission of the copyright owner.

Three-Phase Commit Protocol

2CS 417 © 2023 Paul Krzyzanowski

What’s wrong with the 2PC protocol?
Biggest problem: it’s a blocking protocol with failure modes that require all
systems to recover eventually

– If the coordinator crashes, participants have no idea whether to commit or abort
• A recovery coordinator helps

– If a coordinator AND a participant crashes
• The system has no way of knowing the result of the transaction
• It might have committed at the crashed participant – hence all others must block

The protocol cannot pessimistically abort because some participants may
have already committed

When a participant gets a commit/abort message, it does not know if every other
participant was informed of the result

CS 417 © 2023 Paul Krzyzanowski 3

Three-Phase Commit Protocol
• Same setup as the two-phase commit protocol:
– Coordinator & Participants

• Add timeouts to each phase that result in an abort

• Propagate the result of the commit/abort vote to each participant
before telling them to act on it
– This will allow us to recover the state of the transaction from any

participant and give more options for aborting

4CS 417 © 2023 Paul Krzyzanowski

Three-Phase Commit Protocol
Split the second phase of 2PC into two parts:
2a. “Precommit” (prepare to commit) phase
• Send Prepare message to all participants when it received a yes from all participants in

phase 1
• Participants can prepare to commit but cannot do anything that cannot be undone
• Participants reply with an acknowledgement
• Purpose: let every participant know the state of the result of the vote so that state can be

recovered if anyone dies

2b. “Commit” phase (same as in 2PC)
• If coordinator gets ACKs for all prepare messages
– It will send a commit message to all participants

• Else it will abort – send an abort message to all participants

CS 417 © 2023 Paul Krzyzanowski 5

Three-Phase Commit Protocol: Phase 1

Phase 1: Voting phase
Coordinator sends CanCommit? queries to participants & gets responses
Purpose: Find out if everyone agrees to commit

– [!] If the coordinator gets a timeout from any participant or any “No” replies are received
• Send an abort to all participants

– [!] If a participant times out waiting for a request from the coordinator
• It aborts itself (assume coordinator crashed)

– Else continue to phase 2

6

We can abort if the participant and/or coordinator dies

CS 417 © 2023 Paul Krzyzanowski

Three-Phase Commit Protocol

Phase 2: Prepare to commit phase
– Send a prepare message to all participants
– Get OK messages from all participants
• We need to hear from all before proceeding so we can be sure the state of the protocol can be

properly recovered if the coordinator dies

– Purpose: let all participants know the decision to commit
– [!] If a participant times out: assume it crashed; send abort to all participants

Phase 3: Finalize phase
– Send commit messages to participants and get responses from all
– [!] If participant times out: contact any other participant and move to that state

(commit or abort)
– [!] If coordinator times out: that’s ok – we know what to do

7CS 417 © 2023 Paul Krzyzanowski

3PC Recovery
If the coordinator crashes

A recovery node can query the state from any available participant

Possible states that the participant may report:
Already committed
• That means that every other participant has received a Prepare to Commit
• Some participants may have committed
⇒ Send Commit message to all participants (just in case they didn’t get it)

Not committed but received a Prepare message
• That means that all participants agreed to commit; some may have committed
• Send Prepare to Commit message to all participants (just in case they didn’t get it)
• Wait for everyone to acknowledge; then commit

Not yet received a Prepare message
• This means no participant has committed; some may have agreed
• Transaction can be aborted or the commit protocol can be restarted

8CS 417 © 2023 Paul Krzyzanowski

3PC Weaknesses
• May have problems when the network gets partitioned
– Partition A: nodes that received Prepare message
• Recovery coordinator for A: allows commit

– Partition B: nodes that did not
receive Prepare message
• Recovery coordinator for B: aborts

– Either of these actions are
legitimate as a whole
• But when the network merges back, the system will be inconsistent

• Not good when a crashed coordinator recovers
– It needs to find out that someone else took over and stay quiet
– Otherwise, it will mess up the protocol, leading to an inconsistent state

9CS 417 © 2023 Paul Krzyzanowski

Received Prepare –
commit can proceed

No nodes received
Prepare – must abort

Coordinator Coordinator

Partition A Partition B

3PC coordinator recovery problem
Suppose a coordinator sent a Prepare message to all participants
– All participants acknowledged the message
– BUT the coordinator died before it got all acknowledgements

• A recovery coordinator queries a participant
– It continues with the commit: Sends Prepare, gets ACKs, sends Commit

• Around the same time…the original coordinator recovers
– Realizes it is still missing some replies from the Prepare
– Gets timeouts from some and decides to send an Abort to all participants

• Some processes may commit while others abort!
• 3PC works well when servers crash (fail-stop model)
• But …
– 3PC is not resilient against fail-recover environments
– 3PC is not resilient against network partitions
– Also, 3PC involves an extra round of messages vs. 2PC → extra latency!

10CS 417 © 2023 Paul Krzyzanowski

Consensus-based Commit

11CS 417 © 2023 Paul Krzyzanowski

What about Raft? Didn't it give us consensus?
• Consensus-based protocols (Raft, Paxos) are designed to be resilient against network

partitions

• But consensus protocols are designed to solve a different problem!
– Majority agreement makes sense in replicated state machines,

not in distributed transactions, where each sub-transaction has different responsibilities

• What does Raft/Paxos consensus offer?
– Total ordering of proposals (replicated log)
– Fault tolerance: a proposal is accepted only if a majority of nodes accept it
• This allows recovery of the decision even if some nodes die & others come up

– Is provably resilient in asynchronous networks

• For a two-phase commit protocol to use a consensus algorithm:
Turn the coordinator into a fault-tolerant replicated state machine
– Use replicated nodes to avoid blocking if the coordinator fails
– Run a consensus algorithm on the commit/abort decision of EACH participant

12CS 417 © 2023 Paul Krzyzanowski

What do we want to do with a consensus protocol?
• Each participant must get its chosen value – can_commit or must_abort

– accepted by the majority of replicated nodes

• Transaction Leader
– Chosen via an election algorithm
– Coordinates the commit algorithm
– Not a single point of failure – we can elect a new one; Raft nodes store state

CS 417 © 2023 Paul Krzyzanowski 13

How do we do it?
• Some participant decides to begin to commit
– Sends a message to the Transaction Leader

• Transaction Leader: Sends a prepare message to each participant

• Each participant now sends a can_commit or must_abort message to its instance
of the consensus protocol
– All participants share the elected Transaction Leader
– “Can_commit” or “Must_abort” is sent to majority of followers
– Result is sent to the leader

• Transaction Leader tracks all instances of the commit protocol
– Commit iff every participant’s instance of the consensus protocol chooses “can_commit”
– Tell each participant to commit or abort

CS 417 © 2023 Paul Krzyzanowski 14

Consensus-based fault-tolerant coordinator
The cast:
• One instance of Raft per participant (N participants)
• Set of 2F+1 nodes and a leader play the role of the coordinator
– We can withstand the failure of F nodes
– Leader = node elected to be in charge & run the protocol

CS 417 © 2023 Paul Krzyzanowski 15

Participant Leaderbegin commit

Leader prepare { Participant i=1..N }

Participant i=1..N
value = {can_commit | must_abort)

{ Followers }

{ Followers } Leader

Ready to start

Tell everyone

Each instance of Raft
proposes to commit or abort

Each instance of Raft
tells the result to the leader

• A leader will get at least F+1 messages for each instance
• Commit iff every participant’s instance of Raft chooses can commit
• Raft commit acts like 2PC if only one node

Virtual Synchrony vs. Transactions vs. Raft
• Virtual Synchrony
– Fast & scalable
– Atomic multicast of messages to the entire group – designed for state machine replication
– Focuses on group membership management & atomic multicasts
– Does not handle partitions!

• Two-Phase & Three-Phase Commit
– Most expensive – requires extensive use of stable storage
– 2PC is efficient in terms of # of messages – designed for transactional activities
– Not suitable for high-speed or continuous messaging

• Raft or Paxos Consensus
– General purpose fault-tolerant consensus algorithm – designed for state machine replication
– Not designed for transactions: relies on a majority of systems being up; no concept of abort
– Performance usually limited – need to get majority acceptance – and Raft requires stable storage
– Useful for fault-tolerant log replication & elections
– Using consensus-based commit overcomes dead coordinator and network partition problems of 2PC and 3PC

• But the transaction coordinator at each participant will be a replicated state machine – high overhead
– Need mechanisms to restore state on abort

CS 417 © 2023 Paul Krzyzanowski 16

Scaling & Consistency

17CS 417 © 2023 Paul Krzyzanowski

Reliance on multiple systems affects availability

• One database with 99.9% availability
– 8 hours, 45 minutes, 35 seconds downtime per year

• If a transaction uses 2PC protocol and requires two databases, each
with a 99.9% availability:
– Total availability = (0.999*0.999) = 99.8%
– 17 hours, 31 minutes, 12 seconds downtime per year

• If a transaction requires 5 databases:
– Total availability = 99.5%
– 1 day, 19 hours, 48 minutes, 0 seconds downtime per year

CS 417 © 2023 Paul Krzyzanowski 18

Scaling Transactions
• Transactions require locking part of the database so that everyone sees

consistent data at all times
– Good on a small scale
• Low transaction volumes: getting multiple databases consistent is easy

– Difficult to do efficiently on a huge scale

• Add replication – processes can read any replica
– But all replicas must be locked during updates to ensure consistency

• Risks of not locking:
– Users run the risk of seeing stale data
– The “I” of ACID may be violated
• E.g., two users might try to buy the last book on Amazon

CS 417 © 2023 Paul Krzyzanowski 19

Delays hurt
The delays to achieve consistency can hurt business

• Amazon: 0.1 second increase in response time costs 1% of sales

• Google: 0.5 second increase in latency causes traffic to drop by 20%

• Latency is due to lots of factors
– OS & software architecture, computing hardware, tight vs. loose coupling,

network links, geographic distribution, …
– We’re only looking at the problems caused by the tight software coupling due

to achieving the ACID model

http://www.julianbrowne.com/article/viewer/brewers-cap-theorem
http://highscalability.com/latency-everywhere-and-it-costs-you-sales-how-crush-it

20CS 417 © 2023 Paul Krzyzanowski

Eric Brewer’s CAP Theorem
Three core requirements in a shared data system:
1. Atomic, Isolated Consistency

– Operations must appear totally ordered and each is isolated
2. Availability

– Every request received by a non-failed node must result in a response
3. Partition Tolerance: tolerance to network partitioning

Messages between nodes may be lost

No set of failures less than total failure is allowed to cause the system
to respond incorrectly

CAP Theorem: when there is a network partition, you
cannot guarantee both availability & consistency

21CS 417 © 2023 Paul Krzyzanowski

Commonly (not totally accurately) stated as you can have at most two of the three: C, A, or P

Example: Partition
Life is good

Network partition occurs

From: http://www.julianbrowne.com/article/viewer/brewers-cap-theorem

22

A writes v1 on N1
v1 propagates to N2
B reads v1 on N2

A writes v1 on N1
v1 cannot propagate to N2
B reads v0 on N2

Do we want to give up
consistency or availability?

CS 417 © 2023 Paul Krzyzanowski

A V0

N1

v1

B V0

N2

B V0

N2

A V1

N1

A V1

N1

B V1

N2
V1

1 2 3

A V0

N1

v1

B V0

N2

B V0

N2

A V1

N1

A V1

N1

B V0

N2
V0

1 2 3

Read old
value or

wait?

Partition

v1

v1

time

Giving up one of {C, A, P}
• Ensure partitions never occur
– Put everything on one machine or a cluster in one rack: high availability clustering
– Use two-phase commit or three phase commit
– Scaling suffers

• Give up availability [system is consistent & can handle partitioning]
– Lock data: have services wait until data is consistent
– Classic ACID distributed databases (also 2PC)
– Response time suffers

• Give up consistency [system is available & can handle partitioning]
– Eventually consistent data
– Use expirations/leases, queued messages for updates
– Often not as bad as it sounds!
– Examples: DNS, web caching, Amazon Dynamo, Cassandra, CouchDB

23CS 417 © 2023 Paul Krzyzanowski

We really want
partition tolerance &
high availability for a
distributed system!

Partitions will occur
• With distributed systems, we expect partitions to occur
– Maybe not a true partition but high latency can act like a partition
– This is a property of the distributed environment
– The CAP theorem says we have a tradeoff between availability & consistency

• But we want availability and consistency
– We get availability via replication
– We get consistency with atomic updates

1. Lock all copies before an update
2. Propagate updates
3. Unlock

• We can choose high availability: allow reads before all nodes are updated (avoid
locking)

… or choose consistency: enforce proper locking of nodes for updates
CS 417 © 2023 Paul Krzyzanowski 24

Eventual Consistency Model
• Traditional database systems want ACID
– But scalability is a problem (lots of transactions in a distributed environment)

• Give up Consistent and Isolated
in exchange for high availability and high performance
– Get rid of locking in exchange for multiple versions
– Incremental replication

• BASE = Basically Available • Soft-state • Eventual Consistency

Eventual consistency model:
If no updates are made to a data item, eventually all accesses to that item will
return the last updated value

25CS 417 © 2023 Paul Krzyzanowski

ACID vs. BASE

• Strong consistency

• Isolation

• Focus on commit

• Nested transactions

• Availability can suffer

• Pessimistic access to data
(locking)

• Weak (eventual) consistency: stale
data at times

• High availability

• Best effort approach

• Optimistic access to data

• Simpler model
(but harder for app developer)

• Faster
From Eric Brewer’s PODC Keynote, July 2000
http://www.cs.berkeley.edu/~brewer/cs262b-2004/PODC-keynote.pdf

ACID BASE

26CS 417 © 2023 Paul Krzyzanowski

A place for BASE
• ACID is neither dead nor useless
– Many environments require it
– It’s safer – the framework handles ACID for you

• BASE has become common for large-scale web apps where replication & fault
tolerance is crucial
– eBay, Twitter, Amazon
– Eventually consistent model not always surprising to users
• Cellphone usage data
• Banking transactions (e.g., fund transfer activity showing up on statement)
• Posting of frequent flyer miles

But … the app developer has to worry about update conflicts and
reading stale data … and programmers often write buggy code

CS 417 © 2023 Paul Krzyzanowski 27

The End

28CS 417 © 2023 Paul Krzyzanowski

The End

29CS 417 © 2023 Paul Krzyzanowski

