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Three-Phase Commit Protocol
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What’s wrong with the 2PC protocol?

Biggest problem: it’s a blocking protocol with failure modes that require all
systems to recover eventually

— If the coordinator crashes, participants have no idea whether to commit or abort
* A recovery coordinator helps

— If a coordinator AND a patrticipant crashes
* The system has no way of knowing the result of the transaction
* It might have committed at the crashed participant — hence all others must block

The protocol cannot pessimistically abort because some participants may
have already committed

When a participant gets a commit/abort message, it does not know if every other
participant was informed of the result
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Three-Phase Commit Protocol

» Same setup as the two-phase commit protocol:
— Coordinator & Participants

* Add timeouts to each phase that result in an abort

* Propagate the result of the commit/abort vote to each participant
before telling them to act on it

— This will allow us to recover the state of the transaction from any
participant and give more options for aborting
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Three-Phase Commit Protocol

Split the second phase of 2PC into two parts:

2a. “Precommit’” (prepare to commit) phase

« Send Prepare message to all participants when it received a yes from all participants in
phase 1

 Participants can prepare to commit but cannot do anything that cannot be undone
 Participants reply with an acknowledgement

» Purpose: let every participant know the state of the result of the vote so that state can be
recovered if anyone dies

2b. “Commit” phase (same as in 2PC)

* If coordinator gets ACKs for all prepare messages
— It will send a commit message to all participants

* Else it will abort — send an abort message to all participants
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Three-Phase Commit Protocol: Phase 1

Phase 1: Voting phase

Coordinator sends CanCommit? queries to participants & gets responses
Purpose: Find out if everyone agrees to commit

— [!] If the coordinator gets a timeout from any participant or any “No” replies are received
« Send an abort to all participants

— [!] If a participant times out waiting for a request from the coordinator
* |t aborts itself (assume coordinator crashed)

— Else continue to phase 2

We can abort if the participant and/or coordinator dies
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Three-Phase Commit Protocol

Phase 2: Prepare to commit phase

— Send a prepare message to all participants

— Get OK messages from all participants

* We need to hear from all before proceeding so we can be sure the state of the protocol can be
properly recovered if the coordinator dies

— Purpose: let all participants know the decision to commit
— [I] If a participant times out: assume it crashed; send abort to all participants

Phase 3: Finalize phase

— Send commit messages to participants and get responses from all

— [I] If participant times out: contact any other participant and move to that state
(commit or abort)

— [!] If coordinator times out: that’s ok — we know what to do
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3PC Recovery

If the coordinator crashes
A recovery node can query the state from any available participant

Possible states that the participant may report:

Already committed
* That means that every other participant has received a Prepare to Commit
« Some participants may have committed

= Send Commit message to all participants (just in case they didn’t get it)

Not committed but received a Prepare message

* That means that all participants agreed to commit; some may have committed

« Send Prepare to Commit message to all participants (just in case they didn’t get it)
« Wait for everyone to acknowledge; then commit

Not yet received a Prepare message
« This means no participant has committed; some may have agreed
» Transaction can be aborted or the commit protocol can be restarted
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3PC Weaknesses

* May have problems when the network gets partitioned

— Partition A: nodes that received Prepare message

* Recovery coordinator for A: allows comrgzjttonA [ bt N —

— Partition B: nodes that did not Pi‘;,;:’;’?i;i‘;\f\‘;ggﬂ
receive Prepare message ) I," \“.
 Recovery coordinator for B: aborts I‘x\ ‘ ‘ "

— Either of these actions are l ——r | / N - | =

|egitimate aS a Wh0|e Coordina:or Coordin;tor
« But when the network merges back, the system will be inconsistent

* Not good when a crashed coordinator recovers
— It needs to find out that someone else took over and stay quiet
— Otherwise, it will mess up the protocol, leading to an inconsistent state
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3PC coordinator recovery problem

Suppose a coordinator sent a Prepare message to all participants
— All participants acknowledged the message
— BUT the coordinator died before it got all acknowledgements

A recovery coordinator queries a participant
— It continues with the commit: Sends Prepare, gets ACKs, sends Commit

Around the same time...the original coordinator recovers
— Realizes it is still missing some replies from the Prepare
— Gets timeouts from some and decides to send an Abort to all participants

Some processes may commit while others abort!

3PC works well when servers crash (fail-stop model)
* But ...

— 3PC is not resilient against fail-recover environments
— 3PC is not resilient against network partitions

— Also, 3PC involves an extra round of messages vs. 2PC — extra latency!
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Consensus-based Commit
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What about Raft? Didn't it give us consensus?

Consensus-based protocols (Raft, Paxos) are designed to be resilient against network
partitions

But consensus protocols are designed to solve a different problem!

— Majority agreement makes sense in replicated state machines,
not in distributed transactions, where each sub-transaction has different responsibilities

What does Raft/Paxos consensus offer?
— Total ordering of proposals (replicated log)
— Fault tolerance: a proposal is accepted only if a majority of nodes accept it
« This allows recovery of the decision even if some nodes die & others come up
— Is provably resilient in asynchronous networks

For a two-phase commit protocol to use a consensus algorithm:
Turn the coordinator into a fault-tolerant replicated state machine
— Use replicated nodes to avoid blocking if the coordinator fails

— Run a consensus algorithm on the commit/abort decision of EACH participant
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What do we want to do with a consensus protocol?

« Each participant must get its chosen value — can_commit or must_abort
— accepted by the majority of replicated nodes

» Transaction Leader
— Chosen via an election algorithm
— Coordinates the commit algorithm
— Not a single point of failure — we can elect a new one; Raft nodes store state
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How do we do it?

« Some participant decides to begin to commit
— Sends a message to the Transaction Leader

* Transaction Leader: Sends a prepare message to each participant

« Each participant now sends a can_commit or must_abort message to its instance
of the consensus protocol
— All participants share the elected Transaction Leader
— “Can_commit” or “Must_abort” is sent to majority of followers

— Result is sent to the leader

 Transaction Leader tracks all instances of the commit protocol
— Commit iff every participant’s instance of the consensus protocol chooses “can_commit”
— Tell each participant to commit or abort
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Consensus-based fault-tolerant coordinator

The cast:
* One instance of Raft per participant (N participants)

+ Set of 2F+1 nodes and a leader play the role of the coordinator
— We can withstand the failure of F nodes
— Leader = node elected to be in charge & run the protocol

begin commit

Ready to start Participant Leader
Tell everyone Leader prepare { Participant ._; , }
Each instance of Raft o value = {can_commit | must_abort) -
proposes to commit or abort Participant ,_; n { Followers }
Each instance of Raft
tells the result to the leader { FOllowers } Leader

» A leader will get at least F+7 messages for each instance
« Commit iff every participant’s instance of Raft chooses can commit
» Raft commit acts like 2PC if only one node
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Virtual Synchrony vs. Transactions vs. Raft

* Virtual Synchrony

Fast & scalable

Atomic multicast of messages to the entire group — designed for state machine replication
Focuses on group membership management & atomic multicasts

Does not handle partitions!

+ Two-Phase & Three-Phase Commit
— Most expensive - requires extensive use of stable storage
— 2PC is efficient in terms of # of messages — designed for transactional activities
— Not suitable for high-speed or continuous messaging

- Raft or Paxos Consensus
— General purpose fault-tolerant consensus algorithm — designed for state machine replication
— Not designed for transactions: relies on a majority of systems being up; no concept of abort
— Performance usually limited — need to get majority acceptance — and Raft requires stable storage
— Useful for fault-tolerant log replication & elections

— Using consensus-based commit overcomes dead coordinator and network partition problems of 2PC and 3PC
But the transaction coordinator at each participant will be a replicated state machine — high overhead
— Need mechanisms to restore state on abort
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Scaling & Consistency
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Reliance on multiple systems affects availability

* One database with 99.9% availability
— 8 hours, 45 minutes, 35 seconds downtime per year

* If a transaction uses 2PC protocol and requires two databases, each
with a 99.9% availability:

— Total availability = (0.999*0.999) = 99.8%
— 17 hours, 31 minutes, 12 seconds downtime per year

* If a transaction requires 5 databases:
— Total availability = 99.5%
— 1 day, 19 hours, 48 minutes, 0 seconds downtime per year
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Scaling Transactions

 Transactions require locking part of the database so that everyone sees
consistent data at all times

— Good on a small scale
« Low transaction volumes: getting multiple databases consistent is easy

— Difficult to do efficiently on a huge scale

» Add replication — processes can read any replica
— But all replicas must be locked during updates to ensure consistency

* Risks of not locking:

— Users run the risk of seeing stale data

— The “I” of ACID may be violated
* E.g., two users might try to buy the last book on Amazon
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Delays hurt

The delays to achieve consistency can hurt business
 Amazon: 0.1 second increase in response time costs 1% of sales

* Google: 0.5 second increase in latency causes traffic to drop by 20%

 Latency is due to lots of factors

— OS & software architecture, computing hardware, tight vs. loose coupling,
network links, geographic distribution, ...

— We’re only looking at the problems caused by the tight software coupling due
to achieving the ACID model

http://highscalability.com/latency-everywhere-and-it-costs-you-sales-how-crush-it

http://www.julianbrowne.com/article/viewer/brewers-cap-theorem
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Eric Brewer’s CAP Theorem

Three core requirements in a shared data system:

1. Atomic, Isolated Consistency
— Operations must appear totally ordered and each is isolated

2. Availability
— Every request received by a non-failed node must result in a response

3. Partition Tolerance: tolerance to network partitioning
Messages between nodes may be lost

No set of failures less than total failure is allowed to cause the system
to respond incorrectly

CAP Theorem: when there is a network partition, you
cannot guarantee both availability & consistency

Commonly (not totally accurately) stated as you can have at most two of the three: C, A, or P
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Example: Partition

Life is good

A writes v; on N,
v, propagates to N,

- N2 = N2 -
B reads v, on N, B B \"ﬂ Vi
1 2 3
Network partition occurs N, — | N —
B0 i v

A writes v, on N, E‘@O_X” @_ -

v; cannot propagate to N, N, — N, — N, — Read old

B reads v, on N, B B | Vo B | <'ﬂ value or

wait?

Do we want to give up 1 2 3
consistency or availability? From: http://www.julianbrowne.com/article/viewer/brewers-cap-theorem
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Giving up one of {C, A, P}

» Ensure partitions never occur
— Put everything on one machine or a cluster in one rack: high availability clustering
— Use two-phase commit or three phase commit
— Scaling suffers

« Give up availability [system is consistent & can handle partitioning]

— Lock data: have services wait until data is consistent We really want
— Classic ACID distributed databases (also 2PC) partition tolerance &
— Response time suffers high availability for a

distributed system!

» Give up consistency [system is available & can handle partitioning]
— Eventually consistent data
— Use expirations/leases, queued messages for updates
— Often not as bad as it sounds!
— Examples: DNS, web caching, Amazon Dynamo, Cassandra, CouchDB
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Partitions will occur

» With distributed systems, we expect partitions to occur
— Maybe not a true partition but high latency can act like a partition
— This is a property of the distributed environment
— The CAP theorem says we have a tradeoff between availability & consistency

« But we want availability and consistency
— We get availability via replication
— We get consistency with atomic updates
1. Lock all copies before an update
2. Propagate updates
3. Unlock

» We can choose high availability: allow reads before all nodes are updated (avoid
locking)

... Or choose consistency: enforce proper locking of nodes for updates
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Eventual Consistency Model

* Traditional database systems want ACID
— But scalability is a problem (lots of transactions in a distributed environment)

» Give up Consistent and Isolated
in exchange for high availability and high performance
— Get rid of locking in exchange for multiple versions
— Incremental replication

- BASE = Basically Available « Soft-state * Eventual Consistency

Eventual consistency model:

If no updates are made to a data item, eventually all accesses to that item will
return the last updated value

CS 417 © 2023 Paul Krzyzanowski 25



ACID vs. BASE

ACID BASE

« Strong consistency « Weak (eventual) consistency: stale

data at times
* |solation

 High availability
 Focus on commit

 Best effort approach
* Nested transactions

» Optimistic access to data
« Availability can suffer

« Simpler model

- Pessimistic access to data (but harder for app developer)
(locking)

» Faster
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A place for BASE

* ACID is neither dead nor useless
— Many environments require it
— It’s safer — the framework handles ACID for you

* BASE has become common for large-scale web apps where replication & fault
tolerance is crucial
— eBay, Twitter, Amazon

— Eventually consistent model not always surprising to users
 Cellphone usage data

« Banking transactions (e.g., fund transfer activity showing up on statement)
« Posting of frequent flyer miles

But ... the app developer has to worry about update conflicts and
reading stale data ... and programmers often write buggy code
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The End
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The End

CS 417 © 2023 Paul Krzyzanowski

29



