
CS 417 – DISTRIBUTED SYSTEMS

Paul Krzyzanowski

Week 8: Distributed Transactions
Part 1: Two-Phase Commit

© 2023 Paul Krzyzanowski. No part of this 
content may be reproduced or reposted in 
whole or in part in any manner without the 
permission of the copyright owner.



Atomic Transactions
Transaction
– An operation composed of a sequence of discrete steps.

• All the steps must be completed for the transaction to be committed. 
The results are made permanent.

• Otherwise, the transaction is aborted and the state of the system 
reverts to what it was before the transaction started.
– rollback = revert to a previous state (undo changes)

2CS 417 © 2023 Paul Krzyzanowski



Example: buying a house
– Make an offer
– Sign contract
– Deposit money in escrow
– Inspect the house
– Critical problems from inspection?
– Get a mortgage
– Have seller make repairs

Commit: sign closing papers & transfer deed
Abort: return escrow and revert to pre-purchase state

All or nothing property
3CS 417 © 2023 Paul Krzyzanowski



Another Example
Book a flight from Allentown, PA to Inyokern, CA
No non-stop flights are available:

Transaction begin
1. Reserve a seat for Allentown to O’Hare (ABE→ORD)
2. Reserve a seat for O’Hare to Los Angeles (ORD→LAX)
3. Reserve a seat for Los Angeles to Inyokern (LAX→IYK)
Transaction end

If there are no seats available on the LAX→IYK leg of the journey, the 
entire transaction is aborted and reservations for (1) and (2) are undone.

4CS 417 © 2023 Paul Krzyzanowski



Basic Operations
Transaction primitives:

– Begin transaction (prepare): mark the start of a transaction

Then read/write/compute data – modify files, objects, program state
But any changes will have to be restored if the transaction is aborted

– End transaction: mark the end of a transaction – no more tasks

– Commit transaction: make the results permanent

– Abort transaction: kill the transaction, restore old values

5CS 417 © 2023 Paul Krzyzanowski



Properties of transactions: ACID
• Atomic
– The transaction happens as a single indivisible action. Everything succeeds or else the entire 

transaction is rolled back. Others do not see intermediate results. 

• Consistent
– A transaction cannot leave the database in an inconsistent state & all invariants must be preserved.

E.g., total amount of money in all accounts must be the same before and after a transfer funds
transaction.

• Isolated (Serializable)
– Transactions cannot interfere with each other or see intermediate results

If transactions run at the same time, the result must be the same as if they executed in some serial 
order.

• Durable
– Once a transaction commits, the results are made permanent. 

CS 417 © 2023 Paul Krzyzanowski 6



Distributed Transaction
Transaction that updates data on two or more systems

Implemented as a set of sub-transactions

Challenge
Handle machine, software, & network failures while preserving transaction 
integrity

7CS 417 © 2023 Paul Krzyzanowski



Distributed Transactions
Each computer runs a transaction manager

– Responsible for sub-transactions on that system

– Performs prepare, commit, and abort calls for sub-transactions

Every sub-transaction must agree to commit changes before the overall 
transaction can complete

8CS 417 © 2023 Paul Krzyzanowski



Commits Among Sub-transactions = Consensus

• Remember consensus?
– Agree on a value proposed by at least one process

• BUT – here we need unanimous agreement to commit

• The coordinator proposes to commit a transaction
– All participants agree ⇒ all participants then commit
– Not all participants agree ⇒ all participants then abort

CS 417 © 2023 Paul Krzyzanowski 9



Core Properties
The algorithm must have these properties:

1. Safety (the algorithm must work correctly)
• If one sub-transaction commits, no other sub-transaction will abort
• If one sub-transaction needs to abort, no sub-transactions will commit

2. Liveness (the algorithm must make progress & reach its goal)
• If no sub-transactions fail, the transaction will commit
• If any sub-transactions fail, the algorithm will reach a conclusion to abort

CS 417 © 2023 Paul Krzyzanowski 10



Two-Phase Commit Protocol

11CS 417 © 2023 Paul Krzyzanowski



Two-Phase Commit Protocol

12

Participant

Participant

Participant

Participant

Coordinator

pro
pos

e(co
mm

it)

propose
(commit)

propose(commit)propose(commit)

Participant

Participant

Participant

Participant

Coordinator

yes

yes

yes

no!

CS 417 © 2023 Paul Krzyzanowski



Two-phase commit protocol

Goal: reliably agree to commit or abort a collection of sub-transactions

• All processes in the transaction will agree to commit or abort

• Consensus: all processes agree on whether or not to commit

• One transaction manager is elected as a coordinator
– the rest are participants

• Assume:
– write-ahead log in stable storage
• Enables recording transaction state if the system restarts 

and saving old values of data in case they need to be restored
– No system dies forever
– Systems can always communicate with each other

13CS 417 © 2023 Paul Krzyzanowski



Transaction States

working

committed aborted

When a participant enters the prepared state, it contacts the coordinator to 
start the commit protocol to commit the entire transaction

started

14

prepared
(done)

CS 417 © 2023 Paul Krzyzanowski



Two-Phase Commit Protocol

15

Phase 1: Voting Phase
Get commit agreement from every participant 

Participant

Participant

Participant

Participant

Coordinator

Can
Com

mit?

CanCom
mit?

CanCommit?
CanCommit?

CS 417 © 2023 Paul Krzyzanowski



Two-Phase Commit Protocol

16

Participant

Participant

Participant

Participant

Coordinator

yes

yes

yes

yes

A single “no” response means that
we will have to abort the transaction

CS 417 © 2023 Paul Krzyzanowski

Phase 1: Voting Phase
Get commit agreement from every participant 



Two-Phase Commit Protocol

17

Phase 2: Commit Phase
Send the results of the vote to every participant

Participant

Participant

Participant

Participant

Coordinator

com
mit

commit

commit

commit

Send abort if any participant voted “no”

CS 417 © 2023 Paul Krzyzanowski



Two-Phase Commit Protocol

18

Phase 2: Commit Phase
Get “I have committed” acknowledgements from every participant 

Participant

Participant

Participant

Participant

Coordinator

ack

ack

ack

ack

CS 417 © 2023 Paul Krzyzanowski

The transaction is complete



Dealing with failure
• 2PC assumes a fail-recover model
– Any failed system will eventually recover

• A recovered system cannot change its mind
– If a node agreed to commit and then crashed, it must be willing and able to commit 

upon recovery

We need to handle fail-restart failure & support recovery

• Each system will use a write-ahead (transaction) log
– Keep track of where it is in the protocol (and what it agreed to)
– As well as values to enable commit or abort (rollback)

19CS 417 © 2023 Paul Krzyzanowski



Two-Phase Commit Protocol: Phase 1
1. Voting Phase

Coordinator Participant

• Write prepare to commit to log

• Work on transaction

• Send CanCommit? message

• Wait for message from coordinator

• Wait for all participants to respond • When ready, write agree to commit or 
abort to the log

• Receive the CanCommit? message

• Send agree to commit or abort to the the 
coordinator

20CS 417 © 2023 Paul Krzyzanowski

Get distributed agreement: the coordinator asked each participant if it 
will commit or abort and received replies from each coordinator.



Two-Phase Commit Protocol: Phase 2

Tell all participants to commit or abort
Get everyone’s response that they’re done.

2. Commit Phase
Coordinator Participant

• Write commit or abort to log • Wait for commit/abort message

• Send commit or abort • Receive commit or abort

• Wait for all participants to respond • If a commit was received, write “commit” to 
the log, release all locks, update databases.

• If an abort was received, undo all changes

• Clean up all state. Done!

• Send done message

21CS 417 © 2023 Paul Krzyzanowski



Consensus Properties 
• Validity property
– Aborts in every case except when every process agrees to commit
– The final value (commit or not) has been voted on by at least one process

• Uniform Agreement property
– Every process agrees on the value proposed by the coordinator if and only if they are instructed to 

do so by the coordinator in phase 2

• Integrity property
– Every process proposes only a single value (commit or abort) and does not change its mind

• Termination property
– Every process is guaranteed to make progress and eventually return a vote to the coordinator

CS 417 © 2023 Paul Krzyzanowski 22



Dealing with failure
Failure during Phase 1 (voting)

Coordinator dies
Some participants may have responded; others have no clue
⇒ Coordinator restarts voting: checks log; sees that voting was in progress

Participant dies
The participant may have died before or after sending its vote to the coordinator
⇒ If the coordinator received the vote, it waits for other votes and then goes to phase 2
⇒ Otherwise: wait for the participant to recover and respond (keep querying it)

23CS 417 © 2023 Paul Krzyzanowski



Dealing with failure
Failure during Phase 2 (commit/abort)

Coordinator dies
Some participants may have been given commit/abort instructions
⇒ Coordinator restarts; checks log; informs all participants of chosen action

Participant dies
The participant may have died before or after getting the commit/abort request
⇒ Coordinator keeps trying to contact the participant with the request
⇒ Participant recovers; checks log; gets request from coordinator
– If it committed/aborted, acknowledge the request
– Otherwise, process the commit/abort request and send back the acknowledgement

24CS 417 © 2023 Paul Krzyzanowski



Adding a recovery coordinator
• Another system can take over for the coordinator
– It could be a participant that detected a timeout to the coordinator

• Recovery node needs to find the state of the protocol
– Contact ALL participants to see how they voted
– If we get voting results from all participants 
• We know that Phase 1 has completed
• If all participants voted to commit ⇒ send commit request
• Otherwise send abort request

– If ANY participant states that it has not voted
• We know that Phase 1 has not completed
• ⇒ Restart the protocol

• But … if any participant node also crashes, we’re stuck!
– Must wait for recovery

25CS 417 © 2023 Paul Krzyzanowski



The End

26CS 417 © 2023 Paul Krzyzanowski


