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AFS
Andrew File System
Carnegie Mellon University

c. 1986(v2), 1989(v3) 
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AFS
• Design Goal
– Support information sharing on a large scale

e.g., 10,000+ clients

• History
– Developed at CMU
– Became a commercial spin-off: Transarc
– IBM acquired Transarc
– Open source under IBM Public License
– OpenAFS (openafs.org)
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AFS Design Assumptions
• Most files are small

• Reads are more common than writes

• Most files are accessed by one user at a time

• Files are referenced in bursts (locality)
– Once referenced, a file is likely to be referenced again
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AFS Design Decisions
Whole file serving
– Send the entire file on open

Long-term whole file caching
– Client caches entire file on local disk
– Client writes the file back to server on close
• if modified
• Keeps cached copy for future accesses
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AFS Server: cells
Servers are grouped into administrative entities called cells

• Cell: collection of
– Servers
– Administrators
– Users
– Clients

• Each cell is autonomous, but cells may cooperate and present users with 
one uniform name space

CS 417 © 2022 Paul Krzyzanowski 6



AFS Server: volumes
Disk partition contains

file and directories

Volume
– Administrative unit of organization

E.g., user’s home directory, local source, etc.
– Each volume is a directory tree (one root)
– Assigned a name and ID number
– A server will often have 100s of volumes

Grouped into volumes
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Namespace management

Clients get information via cell directory server (Volume Location 
Server) that hosts the Volume Location Database (VLDB)

Goal:
everyone sees the same namespace

/afs/cellname/path

/afs/mit.edu/home/paul/src/try.c
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Cell mit.edu
Cell 

Directory 
Server

Cell cs.princeton.edu
Cell 

Directory 
ServerCell cs.rutgers.edu

Files, Directories, Volumes, Cells

9

Volume 1 Volume 2 Volume 3 Volume 4

Server A Server B

Cell Directory 
Server VLDB

AFS provides a uniform namespace from anywhere
/afs/cellname/path
/afs/mit.edu/home/paul/src/try.c

CS 417 © 2022 Paul Krzyzanowski



Communication with the server
• Communication is via RPC over UDP

• Access control lists used for protection
– Directory granularity
– UNIX permissions ignored (except execute)
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AFS cache coherence
On open:
– Server sends entire file to client

and provides a callback promise:
– It will notify the client when any other process modifies the file

If a client modified a file:
– Contents are written to server on close

Callbacks: when a server gets an update:
– it notifies all clients that have been issued the callback promise
– Clients invalidate cached files
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AFS cache coherence
If a client was down
– On startup, contact server with timestamps of all cached files to decide 

whether to invalidate

If a process has a file open
– It continues accessing it even if it has been invalidated
– Upon close, contents will be propagated to server

AFS: Session Semantics
(vs. sequential semantics)
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AFS replication and caching
• Limited replication
– Read-only volumes may be replicated on multiple servers

• Advisory locking supported
– Query server to see if there is a lock

• Referrals
– An administrator may move a volume to another server
– If a client accesses the old server, it gets a referral to the new one
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AFS key concepts
• Single global namespace
– Built from a collection of volumes across cells
– Referrals for moved volumes
– Replication of read-only volumes

• Whole-file caching
– Offers dramatically reduced load on servers

• Callback promise
– Keeps clients from having to poll the server to invalidate cache
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AFS summary
AFS benefits
– AFS scales well
– Uniform name space
– Read-only replication
– Security model supports mutual authentication, data encryption

AFS drawbacks
– Session semantics
– Directory based permissions
– Uniform name space
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DFS (based on AFS v3)
Distributed File System
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DFS
AFS: scalable performance but session semantics were hard to live with

• Goal
– Create a file system similar to AFS but with a strong consistency model

• History
– Part of Open Group’s Distributed Computing Environment (DCE)
– Descendant of AFS - AFS version 3.x

• Assume (like AFS):
– Most file accesses are sequential
– Most file lifetimes are short
– Majority of accesses are whole file transfers
– Most accesses are to small files
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Caching and Server Communication
• Increase effective performance with
– Caching data that you read
• Safe if multiple clients reading, nobody writing

– read-ahead
• Safe if multiple clients reading, nobody writing

– write-behind (delaying writes to the server)
• Safe if only one client is accessing file

Goal:
Minimize # of times client informs server of changes —
but do so in a way that clients all have valid data

18CS 417 © 2022 Paul Krzyzanowski



DFS Tokens
Cache consistency maintained 
by tokens

Token
–Guarantee from server that a client 

can perform certain operations on a 
cached file

–Server grants & revokes tokens

• Open tokens
– Allow token holder to open a file
– Token specifies access

(read, write, execute, exclusive-write)

• Data tokens
– Applies to a byte range
– read token - can use cached data
– write token - write access, cached writes

• Status tokens
– read: can cache file attributes
– write: can cache modified attributes

• Lock tokens
– Holder can lock a byte range of a file
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Living with tokens
• Server grants and revokes tokens
– Multiple read tokens OK
– Multiple read and a write token or multiple write tokens
• Not OK if byte ranges overlap
• Revoke all other read and write tokens
• Block new request and send revocation to other token holders
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DFS key points
• Caching
– Token granting mechanism
• Allows for long term caching and strong consistency

– Caching sizes: 8K – 256K bytes
– Read-ahead (like NFS)
• Don’t have to wait for entire file before using it as with AFS

• File protection via access control lists (ACLs)

• Communication via authenticated RPCs

• Essentially AFS v3 with server-based token granting
– Server keeps track of who is reading and who is writing files
– Server must be contacted on each open and close operation to request token

CS 417 © 2022 Paul Krzyzanowski 21



Coda
COnstant Data Availability
Carnegie-Mellon University

c. 1990-1992
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Coda Goals
Originated from AFS

1. Provide better support for replication than AFS
– Support shared read/write files

2. Support mobility of PCs
– Provide constant data availability in disconnected environments
– Use hoarding (user-directed caching)
– Log updates on client
• Reintegrate on connection to network (server)
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Modifications to AFS
Support replicated file volumes

• A volume can be replicated on a group of servers
– Volume Storage Group (VSG)

• Replicated volumes
– Volume ID used to identify files is a Replicated Volume ID
– One-time lookup
• Replicated volume ID ® list of servers and local volume IDs

– Read files from any server
– Write to all available servers
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Disconnected volume servers
AVSG: Accessible Volume Storage Group
– Subset of VSG

On first download, contact everyone you can and get a version 
timestamp of the file

If the client detects that some servers have old versions
– Client initiates a resolution process
• Notifies server of stale data
• Resolution handled entirely by servers
• Administrative intervention may be required

(if conflicts)
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AVSG = Ø
• If no servers are accessible
– Client goes to disconnected operation mode

• If file is not in cache
– Nothing can be done… fail

• Do not report failure of update to server
– Log update locally in Client Modification Log (CML)
– User does not notice
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Reintegration
Upon reconnection
– Commence reintegration

Bring server up to date with CML log playback
– Optimized to send latest changes

Try to resolve conflicts automatically
– Not always possible
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Support for disconnection
Keep important files up to date
– Ask server to send updates if necessary

Hoard database
– Automatically constructed by monitoring the user’s activity
– And user-directed pre-fetch
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Coda summary
• Session semantics as with AFS

• Replication of read/write volumes
– Clients do the work of writing replicas (extra bandwidth)
– Client-detected reintegration

• Disconnected operation
– Client modification log
– Hoard database for needed files
• User-directed pre-fetch

– Log replay on reintegration

CS 417 © 2022 Paul Krzyzanowski 29



SMB
Server Message Block Protocol
Microsoft

c. 1987
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SMB Goals
• File sharing protocol for Windows 9x–Windows 11, Window NT–20xx

• Protocol for sharing
– Files, devices, communication abstractions (named pipes), mailboxes

• Servers: make file system and other resources available to clients

• Clients: access shared file systems, printers, etc. from servers

Design  Priority: locking and consistency over client caching
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SMB Design
• Request-response protocol – similar to RPC
– Send and receive message blocks
• name from old DOS system call structure

– Send request to server – the PC with the resource you want
– Server sends response

• Connection-oriented protocol
– Persistent connection – “session”

• Each message contains:
– Fixed-size header
– Command string (based on message) or reply string
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Message Block
• Header: [fixed size]
– Protocol ID
– Command code (0..FF)
– Error class, error code
– Tree ID – unique ID for resource in use by client (handle)
– Caller process ID
– User ID
– Multiplex ID (to route requests in a process)

• Command: [variable size]
– Param count, params, #bytes data, data
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SMB commands
• Files
– Get disk attributes
– create/delete directories
– search for file(s)
– create/delete/rename file
– lock/unlock file area
– open/commit/close file
– get/set file attributes

• Print-related
– Open/close spool file
– write to spool
– Query print queue

• User-related
– Discover home system 

for user
– Send message to user
– Broadcast to all users
– Receive messages
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Protocol Steps
• Establish connection
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Protocol Steps
• Establish connection

• Negotiate protocol
– negprot SMB
– Responds with version number of protocol
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Protocol Steps
• Establish connection

• Negotiate protocol

• Authenticate/set session parameters
– Send sesssetupX SMB with username, password
– Receive NACK or UID of logged-on user
– UID must be submitted in future requests

CS 417 © 2022 Paul Krzyzanowski 37



Protocol Steps
• Establish connection

• Negotiate protocol - negprot

• Authenticate - sesssetupX

• Make a connection to a resource (similar to mount)
– Send tcon (tree connect) SMB with name of shared resource
– Server responds with a tree ID (TID) that the client will use in future requests 

for the resource
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Protocol Steps
• Establish connection

• Negotiate protocol - negprot

• Authenticate - sesssetupX

• Make a connection to a resource – tcon

• Send open/read/write/close/… SMBs
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SMB Evolves
Common Internet File System (1996)
SMB 2 (2006)
SMB 3 (2012)
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SMB Evolves
• History
– SMB was reverse-engineered for non-Microsoft platforms
• samba.org
• E.g., Linux & macOS use Samba to access file shares from Windows

– Microsoft released SMB protocol to X/Open in 1992

– Common Internet File System (CIFS): 1996  – large files, symlinks, hardlinks
– SMB 2.0: 2006  – less chatty
– SMB 3.0: 2012  – end-to-end encryption, failover
– SMB 3.1: 2016  – 128-big AES encryption
– SMB 3.1.1: 2021  – 256-bit AES encryption
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Caching and Server Communication
Increase effective performance with
– Caching
• Safe if multiple clients reading, nobody writing

– read-ahead
• Safe if multiple clients reading, nobody writing

– write-behind
• Safe if only one client is accessing file

Goal: minimize times client informs server of changes
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Oplocks
Server grants opportunistic locks (oplocks) to client
– Clients request oplocks from a server so they can cache data
– Oplock tells client how/if it may cache data
– Similar to DFS tokens (but more limited)

Client must request an oplock
– The oplock may be
• Granted
• Revoked by the server at some future time
• Changed by server at some future time
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Level 1 oplock (exclusive access)
– Client can open file for exclusive access
– Arbitrary caching
– Cache lock information
– Read-ahead
– Write-behind

If another client opens the file, the server has former client break its oplock:
– Client must send server any lock and write data and acknowledge that it 

does not have the lock
– Purge any read-aheads
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Level 2 oplock (multiple readers, no writers)
• Level 1 oplock is replaced with a Level 2 oplock if another process 

tries to read the file

• Multiple clients may have the same file open as long as none are 
writing

• Cache reads, file attributes
– Send other requests to server

• Level 2 oplock revoked if any client opens the file for writing
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Batch oplock (remote open even if local closed)
• Client can keep file open on server even if a local process that was 

using it has closed the file

• Client requests batch oplock if it expects programs may behave in a 
way that generates a lot of traffic by opening & closing same files over 
and over
– Designed for Windows batch files

• Batch oplock is exclusive: one client only
– revoked if another client opens the file
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Filter oplock (allow preemption)

• Allow apps to look through file data but be notified if someone else 
wants access

• Allow clients with filter oplock to be suspended while another process 
preempted file access
– Indexing service can run and open files without causing programs to get an 

error when they need to open the file
• Indexing service is notified that another process wants to access the file
• It can abort its work on the file and close it or finish its indexing and then close the 

file
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No oplock
• A server can break an oplock – tell a client it no longer has the oplock

• All requests must be sent to the server

• Can work from cache only if byte range was locked by client
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SMB Leases (SMB ≥ 2.1; Windows ≥ 7)
Update (cleanup) to oplocks — same purpose as oplock: control caching

• Lease types
– Read-cache (R) lease: cache results of read; can be shared
– Write-cache (W) lease: cache results of write; exclusive
– Handle-cache (H) lease: cache file handles; can be shared
• Optimizes re-opening files

• Leases can be combined: R, RW, RH, RWH

• Leases define oplocks:
– Read oplock (R) – essentially same as Level 2
– Read-handle (RH) – essentially same as Batch
– Read-write (RW) – essentially the same as Level 1
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See https://docs.microsoft.com/en-us/windows-hardware/drivers/ifs/oplock-overview



Microsoft DFS Namespaces
“Distributed File System”: Service in Windows Server
– Shared folders from different servers can be organized into one file system view
– Provide location transparency
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Computers share one or more volumesNamespace server organizes the volumes

Replicate read-only volumes for load balancing

DFS = SMB + naming/ability to mount server shares on other server shares



SMB Summary
• Stateful model with strong consistency

• Oplocks/leases offer flexible control for distributed consistency

• DFS adds namespace management to create a common hierarchy
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SMB2 and SMB3
• Original SMB was…
– Chatty: common tasks often required multiple round-trip messages
– Not designed for WANs

• SMB2 (2007)
– Protocol dramatically cleaned up
– New capabilities added
– SMB2 became the default network file system in macOS Mavericks (10.9)

• SMB3 (2012)
– Added RDMA and multichannel support; end-to-end encryption
• RDMA = Remote DMA (Direct Memory Access)

– Windows 8 / Windows Server 2012: SMB 3.0
– SMB3 became the default network file system in macOS Yosemite (10.10)
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SMB2 Additions: Message Optimization
• Reduced complexity
– From >100 commands to 19

• Pipelining support
– Send additional commands before the response to a previous one is received

• Compounding support
– Avoid the need to have commands that combine operations
– Send an arbitrary set of commands in one request
– E.g., instead of RENAME:
• CREATE (create new file or open existing)
• SET_INFO
• CLOSE
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SMB2 Additions: Credit-Based Flow Control
Credit-based flow control

Goal: keep more data in flight but avoid overloading servers
– Client session starts with a small # of “credits” and scales up as needed
– Each SMB request to the server costs one credit
• Client decrements the credit count each time it sends a message
• The server responds back with more credits 

– If a server gets more loaded, it can issue fewer credits

Allows servers to control the amount of traffic from each client
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More SMB2 Additions
• Larger reads/writes

• Caching of folder & file properties

• “Durable handles”
– Allow reconnection to server if there was a temporary loss of connectivity
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Sample SMB2 vs. SMB benefits

Transfer 10.7 GB over 1 Gbps WAN link with 76 ms RTT
SMB: 5 hours 40 minutes: rate = 0.56 MB/s
SMB2: 7 minutes, 45 seconds: rate = 25 MB/s



SMB3
Key features
• Multichannel support for network scaling

• Transparent network failover

• “SMBDirect” – support for Remote DMA in clustered environments
– Enables direct, low-latency copying of data blocks from remote memory without CPU 

intervention

• Direct support for virtual machine files
– Volume Shadow Copy
– Enables volume backups to be performed while apps continue to write to files.

• End-to-end encryption
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NFS version 4
Network File System
Sun Microsystems (now Oracle)
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NFS version 4 enhancements
• Stateful server

• Compound RPC
– Group operations together
– Receive set of responses
– Reduce round-trip latency

• Stateful open/close operations
– Supports exclusive creates
– Client can cache aggressively
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NFS version 4 enhancements
• create, link, open, remove, rename
– Inform client if the directory changed during the operation

• Strong security
– Extensible authentication architecture

• File system read/write replication and migration
– Mirror servers can be configured
• If a client accesses a file on a replicated server, the server disables replication, and all requests go 

to that server until the client is done
– Clients don’t need to know where the data is: server will send referrals
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NFS version 4 enhancements
• Stateful locking
– Clients inform servers of lock requests
– Locking is lease-based; clients must renew leases

• Improved caching
– Server can delegate specific actions on a file to enable more aggressive client caching
– Close-to-open consistency
• File changes propagated to server when file is closed
• Client checks timestamp on open to avoid accessing stale cached copy

– Similar to Windows oplocks
• Clients must disable caching to share files

• Callbacks
– Notify client when file/directory contents change
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Review: Core Concepts
• NFS
– RPC-based access, stateless design (initially)

• AFS
– Long-term caching

• DFS
– AFS + tokens for consistency and efficient caching

• Coda
– Read/write replication & disconnected operation

• SMB
– RPC-like access with strong consistency
– Oplocks to support caching
– DFS Namespaces: add-on to provide a consistent view of volumes (AFS-style)
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The End
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