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NFS
Network File System
Sun Microsystems
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NFS Design Goals
• Any machine can be a client or server

• Must support diskless workstations
– Device files refer back to local drivers

• Heterogeneous systems
– Not 100% for all UNIX system call options

• Access transparency: normal file system calls

• Recovery from failure:
– Stateless, UDP, client retries
– Stateless → no locking!

• High Performance
– use caching and read-ahead
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NFS Design Goals

Transport Protocol
Initially NFS ran over UDP 
Requests used Sun (ONC) RPC

Why was UDP chosen?
– Slightly faster than TCP
– No connection to maintain (or to lose)
– NFS is designed for Ethernet LAN environment – relatively reliable
– UDP has error detection (drops bad packets) but no retransmission

(the RPC system will retry RPCs with no responses)
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NFS Protocols
Mounting protocol

Request access to exported directory tree

Directory & File access protocol
Access files and directories
(read, write, mkdir, readdir, … operations)
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Mounting Protocol

• Send pathname to server
– Request permission to access contents

• Server validates access
– Requested pathname must be in the file /etc/exports
– Returns file handle = file device #, inode #, instance #
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client: parses pathname
contacts server for file handle 

client: create in-memory VFS inode at mount point
internally points to rnode the NFS driver to track remote file systems

- Client keeps state, not the server

mount fluffy:/users/paul /home/paul



Directory and file access protocol
• First, perform a lookup RPC
– returns file handle and attributes
– lookup is not like open: No information is stored on server

• handle passed as a parameter for other file access functions
– e.g.,  read(handle, offset, count)
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Directory and file access protocol
NFS has 16 functions
– (version 2; six more added in version 3)

null
lookup

create
remove
rename

link
symlink
readlink

read
write

mkdir
rmdir
readdir

getattr
setattr

statfs
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Improving NFS Performance
• Usually slower than local

• Improve by caching at client
Goal: reduce need for remote operations
– Cache results of read, readlink, getattr, lookup, readdir
– Cache file data at client (buffer cache)
– Cache file attribute information at client
– Cache pathname bindings for faster lookups

• Server side
– Caching is “automatic” via buffer cache
– All NFS writes are write-through to disk to avoid unexpected data loss if server dies

CS 417 © 2023 Paul Krzyzanowski 10



Improving NFS read performance
• Transfer data in chunks
– 8K bytes default

• Read-ahead
– Optimize for sequential file access
– Send requests to read disk blocks before they are requested by the 

application
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Inconsistencies may arise
Try to resolve by validation
– Save timestamp of file
– When file opened or server contacted for new block
• Compare last modification time
• If remote is more recent, invalidate cached data

• Always invalidate data after some time
– After 3 seconds for open files (data blocks)
– After 30 seconds for directories

• If a data block is modified, it is:
– Marked dirty
– Scheduled to be written → Not sent to the server immediately!
– Flushed on file close
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Problems with NFS
• File consistency

• Assumes clocks are synchronized

• Open with append cannot be guaranteed 
to work
– getattr & write(offset) are separate operations

• Locking cannot work
– Separate lock manager added 

(but this adds stateful behavior)

• No reference counting of open files at the 
server
– You can delete a file that you (or others) have 

open!

• File permissions may change
– Invalidating access to file

• Global UID space assumed

• No encryption or authentication
– Requests via unencrypted RPC
– Authentication methods were later added:
• Diffie-Hellman, Kerberos, Unix-style

– Rely on user-level software to  dataencrypt
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Early NFS enhancements (v2)
• User-level lock manager
– Monitored locks: introduces state at server

(but runs as a separate user-level process)
• Status monitor: monitors clients with locks
• Informs lock manager if host inaccessible
• If server crashes: status monitor reinstates locks on recovery
• If client crashes: all locks from client are freed

• NV RAM support
– Improves write performance
– Normally NFS must write to disk on server before responding to client write requests
– Relax this rule through the use of non-volatile RAM
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Early NFS enhancements (v2)
• Adjust RPC retries dynamically
– Reduce network congestion from excess RPC retransmissions under load
– Based on performance

• Client-side disk caching – cacheFS
– Extend buffer cache to disk for NFS
• Cache in memory first
• Cache on disk in 64KB chunks
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More improvements… NFS v3
• Updated version of NFS protocol

• Support 64-bit file sizes

• TCP support and large-block transfers
– UDP caused more problems on WANs (errors)
– All traffic can be multiplexed on one connection
• Minimizes connection setup

– No fixed limit on amount of data that can be transferred between client and server

• Negotiate for optimal transfer size
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More improvements… NFS v3
• New commit operation
– Check with server after a write operation to see if data is committed
– If commit fails, client must resend data
– Reduce number of write requests to server
– Speeds up write requests
• Don’t require server to write to disk immediately

• Return file attributes with each request
– Saves extra RPCs to get attributes for validation
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The End
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