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Accessing files
File sharing with socket-based programs

HTTP, FTP, telnet:
– Explicit access
– User-directed connection to access remote resources

We want more transparency
– Allow user to access remote resources just as local ones
⇒ NAS: Network Attached Storage

CS 417 © 2023 Paul Krzyzanowski 2



System Design Issues
• Transparency
– Integrated into OS or access via APIs?

• Consistency
– What happens if more than one user accesses the same file?
– What if files are replicated across servers?

• Security
– The local OS is no longer in charge

• Reliability
– What happens when the server or client dies?

• State
– Should the server keep track of clients between requests?
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File service models
Download/Upload model
–Read file: copy file from server to client
–Write file: copy file from client to server

Advantage
–Simple
– Local access speeds

Problems
–Wasteful: what if client needs small piece?
–Problematic: what if client doesn’t have 

enough space?
–Consistency: what if others need to modify 

the same file?

Remote access model
File service provides functional interface:
– create, delete, read bytes, write bytes, etc…

Advantages
–Client gets only what’s needed
–Server can manage coherent view of file system

Problem
–Possible server and network congestion
• Servers are accessed for duration of file access
• Same data may be requested repeatedly
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Semantics of file sharing
Sequential Semantics

Read returns result of last write

Easily achieved if
– We use a remote access model
– Server data is not replicated
– Clients do not cache data

BUT
– Performance problems if no cache
• Clients get obsolete data

– We can write-through
• Must notify all clients holding copies
• Requires extra state, generates extra traffic

Session Semantics

Relax the rules

• Changes to an open file are initially 
visible only to the process (or machine) 
that modified it.

• Need to hide or lock file under 
modification from other clients

• Last process  to close the file wins
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Remote File Service

Server
• File Directory Service
– Maps textual names for file to internal locations that can be used by file service

• File service
– Provides file access interface to clients

Client
• Client module (driver)
– Client-side interface for the file and directory service
– Can provide access transparency if implemented in the kernel
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Accessing Remote Files
For maximum transparency, implement the client module as a file 
system type under VFS

System call interface

VFS

ext4 NTFS procfs Remote
FS

Sockets

Network protocols

Net devices

network

Kernel-level sockets interface
sosend, soreceive in BSD & Linux
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Stateful or Stateless design?
Stateful

Server maintains client-specific state

• Shorter requests

• Better performance in processing 
requests

• Cache coherence is possible
– Server can know who’s accessing what

• File locking is possible

Stateless
Server stores no information on client accesses
• Each request must identify file and offsets
• Server can crash and recover – or fail over
– No state to lose

• Client can crash and recover
• No open/close operations needed
– They only establish state

• No server space used for state
– Don’t worry about the # of clients to support

• Client caching can affect consistency
• Problems if file is deleted on server
• File locking not possible

CS 417 © 2023 Paul Krzyzanowski 8



Caching
Hide latency to improve performance for repeated accesses

File data can reside in several places
– Server’s disk ← original version
– Server’s buffer cache 
– Client’s buffer cache
– Client’s disk

WARNING:
risk of cache consistency 
problems across multiple systems
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Write-through
– What if another client reads its own (out-of-

date) cached copy?
– All accesses will require checking with server
– Or … server maintains state and sends 

invalidations

Delayed writes (write-behind)
– Data can be buffered locally

(watch out for consistency – others won’t see 
updates!)

– Remote files updated periodically
– One bulk write is more efficient than lots of 

little writes
– Problem: semantics become ambiguous

Write on close
– Admit that we have session semantics

Read-ahead (prefetch)
– Request chunks of data before it is needed
– Minimize wait times if that data is later 

needed

Centralized control
– Keep track of who has what open and 

cached on each node
– More state to track on the server & more 

messages
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Next…

NFS
AFS

Coda

DFS

SMB

NFSv4

SMB2,3

GFS

HDFS
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The End
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