
CS 417 – DISTRIBUTED SYSTEMS

Paul Krzyzanowski

Week 6: Network Attached Storage
Part 1: Network Attached Storage

© 2023 Paul Krzyzanowski. No part of this
content may be reproduced or reposted in
whole or in part in any manner without the
permission of the copyright owner.

Accessing files
File sharing with socket-based programs

HTTP, FTP, telnet:
– Explicit access
– User-directed connection to access remote resources

We want more transparency
– Allow user to access remote resources just as local ones
⇒ NAS: Network Attached Storage

CS 417 © 2023 Paul Krzyzanowski 2

System Design Issues
• Transparency
– Integrated into OS or access via APIs?

• Consistency
– What happens if more than one user accesses the same file?
– What if files are replicated across servers?

• Security
– The local OS is no longer in charge

• Reliability
– What happens when the server or client dies?

• State
– Should the server keep track of clients between requests?

3CS 417 © 2023 Paul Krzyzanowski

File service models
Download/Upload model
–Read file: copy file from server to client
–Write file: copy file from client to server

Advantage
–Simple
– Local access speeds

Problems
–Wasteful: what if client needs small piece?
–Problematic: what if client doesn’t have

enough space?
–Consistency: what if others need to modify

the same file?

Remote access model
File service provides functional interface:
– create, delete, read bytes, write bytes, etc…

Advantages
–Client gets only what’s needed
–Server can manage coherent view of file system

Problem
–Possible server and network congestion
• Servers are accessed for duration of file access
• Same data may be requested repeatedly

CS 417 © 2023 Paul Krzyzanowski 4

Semantics of file sharing
Sequential Semantics

Read returns result of last write

Easily achieved if
– We use a remote access model
– Server data is not replicated
– Clients do not cache data

BUT
– Performance problems if no cache
• Clients get obsolete data

– We can write-through
• Must notify all clients holding copies
• Requires extra state, generates extra traffic

Session Semantics

Relax the rules

• Changes to an open file are initially
visible only to the process (or machine)
that modified it.

• Need to hide or lock file under
modification from other clients

• Last process to close the file wins

CS 417 © 2023 Paul Krzyzanowski 5

Remote File Service

Server
• File Directory Service
– Maps textual names for file to internal locations that can be used by file service

• File service
– Provides file access interface to clients

Client
• Client module (driver)
– Client-side interface for the file and directory service
– Can provide access transparency if implemented in the kernel

CS 417 © 2023 Paul Krzyzanowski 6

Accessing Remote Files
For maximum transparency, implement the client module as a file
system type under VFS

System call interface

VFS

ext4 NTFS procfs Remote
FS

Sockets

Network protocols

Net devices

network

Kernel-level sockets interface
sosend, soreceive in BSD & Linux

CS 417 © 2023 Paul Krzyzanowski 7

Apps Apps Apps Apps Apps Apps

O
pe

ra
tin

g
sy

st
em

 k
er

ne
l

Stateful or Stateless design?
Stateful

Server maintains client-specific state

• Shorter requests

• Better performance in processing
requests

• Cache coherence is possible
– Server can know who’s accessing what

• File locking is possible

Stateless
Server stores no information on client accesses
• Each request must identify file and offsets
• Server can crash and recover – or fail over
– No state to lose

• Client can crash and recover
• No open/close operations needed
– They only establish state

• No server space used for state
– Don’t worry about the # of clients to support

• Client caching can affect consistency
• Problems if file is deleted on server
• File locking not possible

CS 417 © 2023 Paul Krzyzanowski 8

Caching
Hide latency to improve performance for repeated accesses

File data can reside in several places
– Server’s disk ← original version
– Server’s buffer cache
– Client’s buffer cache
– Client’s disk

WARNING:
risk of cache consistency
problems across multiple systems

CS 417 © 2023 Paul Krzyzanowski 9

Write-through
– What if another client reads its own (out-of-

date) cached copy?
– All accesses will require checking with server
– Or … server maintains state and sends

invalidations

Delayed writes (write-behind)
– Data can be buffered locally

(watch out for consistency – others won’t see
updates!)

– Remote files updated periodically
– One bulk write is more efficient than lots of

little writes
– Problem: semantics become ambiguous

Write on close
– Admit that we have session semantics

Read-ahead (prefetch)
– Request chunks of data before it is needed
– Minimize wait times if that data is later

needed

Centralized control
– Keep track of who has what open and

cached on each node
– More state to track on the server & more

messages

CS 417 © 2023 Paul Krzyzanowski 10

Approaches to caching

Next…

NFS
AFS

Coda

DFS

SMB

NFSv4

SMB2,3

GFS

HDFS
CS 417 © 2023 Paul Krzyzanowski 11

The End

12CS 417 © 2023 Paul Krzyzanowski

