CS 417 - DISTRIBUTED SYSTEMS

p-,

Week 5: Part 1 Rey, 5
Distributed Mutual EXCIUSion

©12023 Paul Krzyzanowski. No part of this

PaU| KrzyzanOWSkl I . '» content may be reproduced orreposted in

y whole or in part in any manner withoutthe
/\ TN ) \ permission ofthe copyright owner.



Process Synchronization

Techniques to coordinate execution among processes

— One process may have to wait for another
— Shared resource (critical section) may require exclusive access

Mutual exclusion

Examples ¢ Update a fields in database tables
* Modify a shared file
» Modify file contents that are replicated on multiple servers

Easy to handle if the entire request is atomic
« Contained in a single message; server can manage mutual exclusion

Needs to be coordinated if the request comprises multiple messages
or spans multiple systems

October 9, 2023 CS 417 © 2023 Paul Krzyzanowski 2



Centralized Systems

Achieve mutual exclusion via:
— Test & set in hardware
— Semaphores
— Messages (inter-process)
— Condition variables

October 9, 2023 CS 417 © 2023 Paul Krzyzanowski 3



Distributed Mutual Exclusion

Goal:

Create an algorithm to allow a process to request and obtain exclusive access to
a resource that is available on the network

Required properties:
Safety: At any instant, only one process may hold the resource

Liveness: The algorithm should make progress; processes should not wait forever for
messages that will never arrive

Also desired:

Fairness:Each process gets a fair chance to hold the resource: bounded wait time &
in-order processing of requests

October 9, 2023 CS 417 © 2023 Paul Krzyzanowski 4



Resource identification

— Assume there is agreement on how a resource is identified
 Pass this identifierwith each request

* e.g., lock("printer"), lock("table:employees"), lock("table:employees;row:15"), lock("shared_file.txt")
— We’'ll just use request(R) to request exclusive access to resource R

» Process identification
— Every process has a unique ID (e.g., address.process_id)
» Reliable communication
— Network messages are reliable (may require retransmission of lost/corrupted messages)

* Live processes
— The processes in the system do not die

October 9, 2023 CS 417 © 2023 Paul Krzyzanowski



Categories of mutual exclusion algorithms

* Centralized

— A process can access a resource because a central coordinator allowed it to
do so

« Token-based
— A process can access a resource if it is holding a token permitting it to do so

 Contention-based
— A process can access a resource via distributed agreement

October 9, 2023 CS 417 © 2023 Paul Krzyzanowski 6



Centralized algorithm

* Mimic single processor system

» One process elected as coordinator

Request resource request(R
Walit for response
Receive grant
accessresource
Release resource

release(R)

ok wbdhRE

October 9, 2023 CS 417 © 2023 Paul Krzyzanowski 7



Centralized algorithm

If another process claimed the resource:
— Coordinator does not reply until release
— Maintain queue: service requests in FIFO order

R in use by: P, request(R)

R Request Queue
P;

grant(R)

request(R)

October 9, 2023 CS 417 © 2023 Paul Krzyzanowski 8



Centralized algorithm

If another process claimed the resource:
— Coordinator does not reply until release
— Maintain queue: service requests in FIFO order

request(R)

R in use by: P,

R Request Queue
P;

= @

October 9, 2023 CS 417 © 2023 Paul Krzyzanowski 9



Centralized algorithm

If another process claimed the resource:
— Coordinator does not reply until release
— Maintain queue: service requests in FIFO order

R in use by: P4

R Reguest Queue e
- Y

release(R)

grant(R

October 9, 2023 CS 417 © 2023 Paul Krzyzanowski 10



Centralized algorithm

If another process claimed the resource:
— Coordinator does not reply until release
— Maintain queue: service requests in FIFO order

R in use by: P, grant(R

R Request Queue

e elease(R)

October 9, 2023 CS 417 © 2023 Paul Krzyzanowski 11



Centralized algorithm

Benefits

« Fair: All requests are processed in order

» Easy to implement, understand, and verify

* Processes do not need to know group members — just the coordinator
- Efficiency: 2 messages to enter, 1 message to exit

Problems

* Process cannot distinguish being blocked from a dead coordinator
= single point of failure

» Centralized server can be a bottleneck (unlikely!)

October 9, 2023 CS 417 © 2023 Paul Krzyzanowski 12



Token Ring algorithm

Assume known group of processes
— Some ordering can be imposed on group (unigue process IDs)
— Construct logical ring in software
— Process communicates with its neighbor

October 9, 2023 CS 417 © 2023 Paul Krzyzanowski 13



Token Ring algorithm

* |nitialization
— Process 0O creates a token for resource R

» Token circulates around ring from P; to P, ;;mod N

« When process acquires token
— Checks to see if it needs the resource (the lock)
— No: send the token to its neighbor
— Yes: access resource & hold token until done

Aen(R)

October 9, 2023 CS 417 © 2023 Paul Krzyzanowski 14



Token Ring algorithm

Your turn to access resource R

October 9, 2023 CS 417 © 2023 Paul Krzyzanowski 15



Token Ring algorithm

Your turn to access
resource R

October 9, 2023 CS 417 © 2023 Paul Krzyzanowski 16



Token Ring algorithm

Your turn to access
resource R

October 9, 2023 CS 417 © 2023 Paul Krzyzanowski 17



Token Ring algorithm

Your turn to access resource R

October 9, 2023 CS 417 © 2023 Paul Krzyzanowski 18



Token Ring algorithm

Your turn to access
resource R

October 9, 2023 CS 417 © 2023 Paul Krzyzanowski 19



Token Ring algorithm

Your turn to access
resource R

October 9, 2023 CS 417 © 2023 Paul Krzyzanowski 20



Token Ring algorithm

Your turn to access resource R

October 9, 2023 CS 417 © 2023 Paul Krzyzanowski 21



Token Ring algorithm

Your turn to access
resource R

October 9, 2023 CS 417 © 2023 Paul Krzyzanowski 22



Token Ring algorithm summary

« Safety: Only one process at a time has token
— Mutual exclusion guaranteed

* Liveness: Order well-defined (but not necessarily first-come, first-served)
— Starvation cannot occur
— Lack of FCFS ordering may be undesirable sometimes

* Delay:
— Request = 0...N-1 messages
— Release = 1 message

October 9, 2023 CS 417 © 2023 Paul Krzyzanowski 23



Token Ring algorithm summary

Downsides/Problems

— Constant activity

— Token loss (e.g., process died)

* Itwill have to be regenerated
» Detecting loss may be a problem—is the tokenlostor injust use by someone?

— Process loss: what if you can't talk to your neighbor?

October 9, 2023 CS 417 © 2023 Paul Krzyzanowski 24



Lamport's Mutual Exclusion

Distributed algorithm using reliable multicast and logical clocks

* Messages are sent reliably and in single-source FIFO order

— Each message is time stamped with totally ordered (i.e., uniqgue) Lamport timestamps
« Ensures that each timestamp is unique
« Every node can make the same decision by comparing timestamps

« Each process maintains a request queue
— Queue contains mutual exclusion requests
— Queues are sorted by message timestamps

October 9, 2023 CS 417 © 2023 Paul Krzyzanowski 25



1. Request a Resource
Process ID

RequestaresourceR: Unique Lamport timestamp

* Process P; sends Request(R, i, T;) to all nodes

It also places the same request onto its own queue Process Time stamp
P, 1021

- When a process P; receives a request: P, 1022
— Itreturns a timestamped Reply(T;) P, 3944
— Places the request on its request queue Pe 8201

P, 9638

Every process will have an identical queue

) Sample request queue for R
— Same contentsinthe same order plereq d

Identical at each process

October 9, 2023 CS 417 © 2023 Paul Krzyzanowski 26



2. Use the Resource

P. can access theresourceiif

* P; has received Reply messages from every process

|:>j where TJ. > T, Process Time stamp
, _ . P, 1021
* Py's request has the earliest timestamp P 1022

. . 8

In its queue P 3944
Ps 8201
P, 9638

If your request is at the head of the queue Sample request queue for R

Identical at each process

AND you received Replies for that request
... then you can access the critical section

October 9, 2023 CS 417 © 2023 Paul Krzyzanowski 27



3. Release the resource

Release aresource:

* Process P; removes its request from its queue
» Sends Release(T;) to all nodes
» Each process now checks if its request is the earliest in its queue

* If so, that process now has the lock on the resource

October 9, 2023 CS 417 © 2023 Paul Krzyzanowski 28



Assessment: Lamport’'s Mutual Exclusion

» Safety: Replicated queues — same process on top
» Liveness: Sorted queue & Lamport timestamps ensure earlier processes go first

» Delay/Bandwidth:
— Request = 2(N-1) messages: (N-1) Request msgs + (N-1) Reply msgs

— Release = (N-1) Release msgs

* Problems
— N points of failure

— Aot of messaging traffic
» Requests & releases are sentto the entire group

Not great ... but demonstrates that a fully distributed algorithm is possible

October 9, 2023 CS 417 © 2023 Paul Krzyzanowski 29



Optimizing Lamport: Ricart & Agrawala algorithm

Another contention-based distributed algorithm
using reliable multicast and logical clocks

When a process wants to enter critical section:

1. Compose a Request(R, i, T;) message containing:
* R: Name of resource
* i: Process ldentifier (machine ID, process|D)
» T.: Timestamp (totally-ordered Lamport)

2. Reliably multicast request to all processes in group
3. Wait until everyone gives permission (sends a Reply)

4. Enter critical section / use resource

October 9, 2023 CS 417 © 2023 Paul Krzyzanowski 30



Ricart & Agrawala algorithm

When process receives a request:
— If receiver not interested: send Reply to sender
— If receiver is using the resource: do not reply; add request to queue

— If receiver just sent a request as well: (potential race condition)
« Compare timestamps on received & sent messages: earliest timestamp wins
* If receiveris the loser: send Reply
* If receiver is the winner: do not reply — queue the request
—When done with resource: send Reply to all queued requests

October 9, 2023 CS 417 © 2023 Paul Krzyzanowski 31



Assessment: Ricart & Agrawala Mutual Exclusion

« Safety: Two competing processes will not send a REPLY to each other
— Timestamps in the requests are unique — one will be earlier than the other

* Liveness: Ordered by Lamport timestamp if there is contention

» Delay/Bandwidth:
— Request = 2(N-1) messages: (N-1) Request msgs + (N-1) Reply msgs

— Release =0 ... (N-1) Reply msgs to queued requests

* Problems
— N points of failure
— Aot of messaging traffic: requests & releases are sent to the entire group

October 9, 2023 CS 417 © 2023 Paul Krzyzanowski 32



Lamport vs. Ricart & Agrawala

Lamport
— Everyone replies ... always — no hold-back
— 3(N-1) messages
* Request— Reply — Release
— Process is granted the resource if its request is the earliest in its queue

Ricart & Agrawala
— If you are in the critical section (or won a tie)
« Don’t respond with a Reply until you are done with the critical section
— 2(N-1) messages
* Request— ACK
— Process is granted the resource if it gets ACKs from everyone

October 9, 2023 CS 417 © 2023 Paul Krzyzanowski 33



Other distributed mutex algorithms

» Suzuki-Kasami
— Adds a token to Ricart & Agrawala
— Improves performance to (N-1) requests and 1 reply

 Maekawa

— Quorum-based approach — a process only needs to send requests to a subset of
the group (a quorum)

— Partitions the group — each subgroup has at least one process in common with
another subgroup

— Performance improved to 3VN ... 6V N messages

* Many more...

October 9, 2023 CS 417 © 2023 Paul Krzyzanowski 34



The End

October 9, 2023

CS 417 © 2023 Paul Krzyzanowski

35



	Slide 1
	Slide 2: Process Synchronization
	Slide 3: Centralized Systems
	Slide 4: Distributed Mutual Exclusion
	Slide 5: Assumptions
	Slide 6: Categories of mutual exclusion algorithms
	Slide 7: Centralized algorithm
	Slide 8: Centralized algorithm
	Slide 9: Centralized algorithm
	Slide 10: Centralized algorithm
	Slide 11: Centralized algorithm
	Slide 12: Centralized algorithm
	Slide 13: Token Ring algorithm
	Slide 14: Token Ring algorithm
	Slide 15: Token Ring algorithm
	Slide 16: Token Ring algorithm
	Slide 17: Token Ring algorithm
	Slide 18: Token Ring algorithm
	Slide 19: Token Ring algorithm
	Slide 20: Token Ring algorithm
	Slide 21: Token Ring algorithm
	Slide 22: Token Ring algorithm
	Slide 23: Token Ring algorithm summary
	Slide 24: Token Ring algorithm summary
	Slide 25: Lamport’s Mutual Exclusion
	Slide 26: 1. Request a Resource
	Slide 27: 2. Use the Resource
	Slide 28: 3. Release the resource
	Slide 29: Assessment: Lamport’s Mutual Exclusion
	Slide 30: Optimizing Lamport: Ricart & Agrawala algorithm
	Slide 31: Ricart & Agrawala algorithm
	Slide 32: Assessment: Ricart & Agrawala Mutual Exclusion
	Slide 33: Lamport vs. Ricart & Agrawala
	Slide 34: Other distributed mutex algorithms
	Slide 35: The End

