
CS 417 – DISTRIBUTED SYSTEMS

Paul Krzyzanowski

Week 3: Part 1
Clock synchronization

© 2023 Paul Krzyzanowski. No part of this
content, may be reproduced or reposted in
whole or in part in any manner without the
permission of the copyright owner.

Synchronization
Synchronization covers interactions among distributed processes

February 18, 2023 CS 417 © 2023 Paul Krzyzanowski 2

Clocks Identify when something happened

Mutual exclusion Only one entity can do an operation at a time

Leader election Who coordinates activity?

Message consistency Does everyone have the same view of events?

Agreement Can everyone agree on a proposed value?

All of these are trivial in non-distributed systems
All of these are tricky in distributed systems

Clock Synchronization

February 18, 2023 CS 417 © 2023 Paul Krzyzanowski 3

Why?
• Allow a process to identify "now" in a way that's consistent with other

processes on other systems
– Scheduling jobs in process control environments
– Applications where time-based billing or access control is needed
– Certificate validation

• Temporal ordering of events from concurrent processes
– Event logging: debugging, root cause analysis, tracking breaches
– Consistent file modification times in shared file systems
– Identifying latest versions

February 18, 2023 CS 417 © 2023 Paul Krzyzanowski 4

Logical vs. physical clocks
• Physical clocks keep time of day
– Consistent across systems

• Logical clock keeps track of event ordering
– among related (causal) events

5February 18, 2023 CS 417 © 2023 Paul Krzyzanowski

Synchronizing physical clocks

February 18, 2023 CS 417 © 2023 Paul Krzyzanowski 6

Problem: Get two systems to agree on time
• Why is it hard?
– Two clocks hardly ever agree
– Quartz oscillators oscillate at slightly different frequencies

• Clocks tick at different rates
– Create ever-widening gap in perceived time ⇒ Clock Drift

• Relative offset = Difference between two clocks at one point in time

• Jitter = Short-term variation in frequency

• Also note — astronomical time vs. relative time
– Time of day vs. count of seconds from epoch

(e.g., Unix/Linux counts seconds from 00:00:00 UTC on 1 January 1970)
– Time of day takes time zones, daylight saving time, leap seconds, etc. into account

February 18, 2023 CS 417 © 2023 Paul Krzyzanowski 7

Dealing with drift
Not good idea to set a clock back
– Illusion of time moving backwards can confuse message ordering and

software development environments

Apply gradual clock correction
If fast (ahead):

Make the clock run slower until it synchronizes

If slow (behind):
Make the clock run faster until it synchronizes

8February 18, 2023 CS 417 © 2023 Paul Krzyzanowski

Dealing with drift
The OS can do this:

1. Redefine the rate at which system time is advanced with each interrupt

or

2. Read the counter but compensate for drift

Adjustment changes slope of system time:
Drift compensation via a linear compensation function

9February 18, 2023 CS 417 © 2023 Paul Krzyzanowski

Compensating for a fast clock

UTC time, t

C
om

pu
te

r’s
 ti

m
e,

 C
Drift compensation
function applied

Clock synchronized
offset

10February 18, 2023 CS 417 © 2023 Paul Krzyzanowski

pe
rfe

ct
tim

e

Compensating for a fast clock

UTC time, t

C
om

pu
te

r’s
 ti

m
e,

 C
Now we’re drifting again!

11February 18, 2023 CS 417 © 2023 Paul Krzyzanowski

pe
rfe

ct
tim

e

Resynchronizing
After synchronization period is reached
– Resynchronize periodically
– Successive adjustment of a drift compensation function can bring us closer

to true slope

Long-term clock stability is not guaranteed
The system clock will still drift based on changes in temperature, pressure,
humidity, and age of the crystal

Keep track of adjustments and apply continuously
– e.g., Linux adjtimex system calls and hwclock command

12February 18, 2023 CS 417 © 2023 Paul Krzyzanowski

Going to sleep
• RTC keeps on ticking when the system is off (or sleeping)

• OS cannot apply correction continually

• Record time when going to sleep
– Read hardware clock on wake-up
– Estimate drift for the interval and apply a correction factor

February 18, 2023 CS 417 © 2023 Paul Krzyzanowski 13

Getting accurate time
• Attach GPS receiver to each computer
– Accurate to ~40 ns

• Not a practical solution for every machine
– Cost, power, convenience, environment
– Accuracy gets worse near buildings, bridges, trees, …

• Chip-scale atomic clock
– Nice, but around $2,000
– Most computers won’t have this either
– And if you have it, you still need to set it

to give you the right time

14February 18, 2023 CS 417 © 2023 Paul Krzyzanowski

Synchronize from a time server
Simplest synchronization technique
– Send a network request to obtain the time
– Set the time to the returned value

Does not account for network or processing latency

what’s the time?

3:42:19
client time

server

15February 18, 2023 CS 417 © 2023 Paul Krzyzanowski

Cristian’s algorithm
Compensate for delays
– Note times:
• request sent: T0

• reply received: T1

– Assume network delays are symmetric

server

client
time

request reply

T0 T1

Tserver

16February 18, 2023 CS 417 © 2023 Paul Krzyzanowski

Cristian’s algorithm

Client sets time to:

server

client
time

request reply

T0 T1

Tserver

estimated overhead
in each direction

=

17February 18, 2023 CS 417 © 2023 Paul Krzyzanowski

Tnew =Tserver +
T1 −T0
2

𝑇! − 𝑇"
2

Error bounds

If the minimum message transit time (Tmin) is known:

Place bounds on accuracy of result

18February 18, 2023 CS 417 © 2023 Paul Krzyzanowski

Error bounds

server

client
time

request reply

T0 T1

Tserver

Tmin Tmin
Earliest time message arrives Latest time message leaves

range = T1 - T0 - 2Tmin

19February 18, 2023 CS 417 © 2023 Paul Krzyzanowski

accuracy of result = ±
T1 −T0
2

−Tmin

Cristian’s algorithm: example
• Send request at 5:08:15.100 (T0)

• Receive response at 5:08:15.900 (T1)

• Response contains 5:09:25.300 (Tserver)

Elapsed time is T1 -T0 = 5:08:15.900 - 5:08:15.100 = 800 ms

Best guess: timestamp was generated 400 ms ago

Set time to Tserver+ elapsed time = 5:09:25.300 + 0.400 = 5:09.25.700

20February 18, 2023 CS 417 © 2023 Paul Krzyzanowski

Note:
1,000 ms = 1 s
1,000,000 µs = 1s

Cristian’s algorithm: example
If best-case message time=200 ms

February 18, 2023 CS 417 © 2023 Paul Krzyzanowski 21

server

client
time

request reply

T0 T1

Tserver

200 200

800

T0 = 5:08:15.100
T1 = 5:08:15.900
Ts = 5:09:25:300
Tmin = 200 ms

Error = ± #""$!""
% − 200 = ± &""

% − 200 = ±200 𝑚𝑠

Berkeley Algorithm
Gusella & Zatti, 1989

• Designed for intranets (e.g., data centers)

• Assumes no machine has an accurate time source

• Obtains time from participating computers

• Synchronizes all clocks to a fault-tolerant average
– Select the largest set of time values that don’t differ from each other by some quantity
– Avoids averaging values of malfunctioning clocks or clocks that drifted too far

22February 18, 2023 CS 417 © 2023 Paul Krzyzanowski

Berkeley Algorithm: example

3:25 2:50 9:10

3:00

1. Request timestamps from all followers

3:2
5

2:50
9:10

23February 18, 2023 CS 417 © 2023 Paul Krzyzanowski

leader

Berkeley Algorithm: example

3:25 2:50 9:10

3:00

2. Compute fault-tolerant average:

3:2
5

2:50
9:10

24February 18, 2023 CS 417 © 2023 Paul Krzyzanowski

Suppose max ∂=0:45

3 : 25 +2 : 50 +3 : 00
3

= 3 : 05

leader

Berkeley Algorithm: example

3:25 2:50 9:10

3:00

3. Send offset to each client

-0:
20 +0:15

-6:05

25February 18, 2023 CS 417 © 2023 Paul Krzyzanowski

leader

Network Time Protocol, NTP
• 1991, 1992
– Internet Standard, version 3: RFC 1305

• June 2010
– Internet Standard, version 4: RFC 5905-5908
– IPv6 support
– Improve accuracy to tens of microseconds
– Dynamic server discovery

• November 2020
– Draft standard, NTP v5

26February 18, 2023 CS 417 © 2023 Paul Krzyzanowski

NTP Goals

• Enable clients across Internet to be accurately synchronized to UTC despite
message delays
– Use statistical techniques to filter data and gauge quality of results

• Provide reliable service
– Survive lengthy losses of connectivity
– Redundant paths, redundant servers

• Provide scalable service
– Enable huge numbers of clients to synchronize frequently
– Offset effects of clock drift

• Provide protection against interference
– Authenticate source of data

27February 18, 2023 CS 417 © 2023 Paul Krzyzanowski

NTP servers
Arranged in strata
– Stratum 0 = master clock

– Stratum 1: systems connected
directly to accurate time source

– Stratum 2: systems synchronized
from 1st stratum systems

– …

– Stratum 15: systems synchronized
from 14th stratum systems

Synchronization Subnet
28

2

3

4

1

0

February 18, 2023 CS 417 © 2023 Paul Krzyzanowski

clock clock

NTP Synchronization Modes
Broadcast (or multicast) mode
– Lower accuracy but efficient; for high-speed LANs

Client-server (procedure call) mode
– Cristian’s algorithm

Symmetric (peer-to-peer) mode
– Peer servers can synchronize with each other to provide mutual backup
• Usually used with stratum 1 & 2 servers
• Pair of servers retain data to improve synchronization over time
• Both devices act as requesters and responders – they operate in the same

stratum and the times converge to each other

All messages are delivered unreliably with UDP (port 123)

29February 18, 2023 CS 417 © 2023 Paul Krzyzanowski

Not supported in NTPv5

Not supported in NTPv5

NTP Clock Quality
• Precision
– Smallest increment of time that can be read from the clock

• Jitter (dispersion)
– Difference in successive measurements
– Due to network delays, OS delays, and clock oscillator instability

• Accuracy
– How close is the clock to UTC?

30February 18, 2023 CS 417 © 2023 Paul Krzyzanowski

NTP messages
• Procedure call and symmetric mode
– Messages exchanged in pairs: request & response

• Time encoded as a 64-bit value:
– Divide by 232 to get the number of seconds since Jan 1 1900 UTC

• NTP calculates:
– Offset for each pair of messages (θ): Estimate of time difference between two clocks

= correction that needs to be applied to a client clock to synchronize it
– Delay (δ): Travel time: ½ of total delay minus remote processing time
– Dispersion = jitter: Maximum offset error relative to reference clock
• Found via repeated synchronizations

• Use this data to find the preferred NTP server:
– Probe multiple servers – each several times
– Pick lowest dispersion … at the lowest stratum if tied

31February 18, 2023 CS 417 © 2023 Paul Krzyzanowski

Simple Network Time Protocol (SNTP)
• Based on Unicast mode of NTP
– Subset of NTP, not new protocol

• Operates in multicast or procedure call mode
• Recommended for environments where server is root node and client is

leaf of synchronization subnet
• Root delay, root dispersion, reference timestamp ignored
• Does not
– Account for servers that provide inconsistent time stamps
– Detect malicious interference

v3 RFC 2030, October 1996; v4 RFC 5905, June 2010

February 18, 2023 CS 417 © 2023 Paul Krzyzanowski 32

SNTP Example

server

client
time

request reply

T1

T2

T4

T3

33February 18, 2023 CS 417 © 2023 Paul Krzyzanowski

Round-trip network delay: Time offset:

𝑡 =
(𝑇%−𝑇!) + (𝑇' − 𝑇()

2
𝜕 = 𝑇(− 𝑇! − (𝑇' − 𝑇%)

SNTP example

Offset = ((800 - 1100) + (850 - 1200)) / 2
= ((-300) + (-350)) / 2
= -650 / 2 = -325

Set time to T4 + t = 1200 - 325 = 875

server

client
time

request reply

T1=1100

T2=800

T4=1200

T3=850

34February 18, 2023 CS 417 © 2023 Paul Krzyzanowski

Time offset: 𝑡 =
(𝑇!−𝑇") + (𝑇# − 𝑇$)

2

SNTP = Cristian’s algorithm

server

client
time

request reply

T1

T2

T4

T3

Ts

35February 18, 2023 CS 417 © 2023 Paul Krzyzanowski

𝑇! =
𝑇" + 𝑇#
2

Just define

Key Points: Physical Clocks
• Cristian’s algorithm & SNTP
– Set clock from server
– But account for network delays
– Error: uncertainty due to network/processor latency
• Errors are additive
• Example: ±10 ms and ±20 ms = ±30 ms

– NTP: track jitter, error, stratum, and delay among several NTP servers to
choose the best one to synchronize from

• Adjust for local clock drift
– Linear compensation function

36February 18, 2023 CS 417 © 2023 Paul Krzyzanowski

Precision Time Protocol

February 18, 2023 CS 417 © 2023 Paul Krzyzanowski 37

More accurate clock synchronization
• Why?
– Industrial process control: synchronizing equipment
– High frequency trading
– Power-grid controls
– Audio/video sync

CS 417 © 2023 Paul Krzyzanowski 38February 18, 2023

PTP: IEEE 1588 Precision Time Protocol
• Designed to synchronize clocks on a LAN to sub-microsecond precision
– Designed for LANs, not global: low jitter, low latency
– Timestamps ideally generated at the MAC or PHY layers to minimize delay and jitter

• Determine master clock (called the Grandmaster)
– Use a Best Master Clock algorithm to determine which clock is most precise
– The Grandmaster sends periodic synchronization messages to others (slave devices)

• Two phases in synchronization
1. Offset correction
2. Delay correction

February 18, 2023 CS 417 © 2023 Paul Krzyzanowski 39

PTP: Choose the “best” clock
Best Master Clock

• Distributed election based on properties of clocks

• Criteria from highest to lowest:
– Priority 1 (admin-defined hint)
– Clock class
– Clock accuracy
– Clock variance: estimate of stability based on past syncs
– Priority 2 (admin-defined hint #2)
– Unique ID (tie-breaker)

40February 18, 2023 CS 417 © 2023 Paul Krzyzanowski

PTP: Master initiates sync

master

slave
time

time

Master initiates the protocol by sending a sync message containing a timestamp

Slave timestamps arrival with a timestamp from its local clock

Offset + Delay = T2 - T1

T1

T2

sync

41February 18, 2023 CS 417 © 2023 Paul Krzyzanowski

PTP: Send delay request

Slave needs to figure out the network delay. Send a delay request

Note the time it was sent

42February 18, 2023 CS 417 © 2023 Paul Krzyzanowski

master

slave
time

time

T1

T2 T3

T4

sync

de
lay

 re
qu

es
t

Offset + Delay = T2 - T1

PTP: Receive delay response

Master marks the time of arrival and returns it in a delay response

Delay response = Delay - Offset = T4 – T3

43February 18, 2023 CS 417 © 2023 Paul Krzyzanowski

master

slave
time

time

T1

T2 T3

T4

sync

de
lay

 re
qu

es
t delay response

Offset + Delay = T2 - T1

PTP: Slave computes offset

master

slave
time

time

master_slave_difference = T2 – T1 = delay + offset
slave_master_difference = T4 – T3 = delay – offset

master_slave_difference – slave_master_difference = 2(offset)
(T2 – T1) – (T4 – T3) = T2 – T1 – T4 + T3 = 2(offset)

offset = (T2 – T1 – T4 + T3) ÷ 2

T1

T2 T3

T4

sync

de
lay

 re
qu

es
t delay response

44February 18, 2023 CS 417 © 2023 Paul Krzyzanowski

-

Delay + Offset = T2 - T1

Delay - Offset = T4 - T3

PTP: Example

master

slave
time

time

master_slave_difference = T2 – T1 = delay + offset

slave_master_difference = T4 – T3 = delay – offset
master_slave_difference – slave_master_difference = 2(offset)

offset = (T2 – T1 – T4 + T3) ÷ 2

T1

T2 T3

T4

sync

de
lay

 re
qu

es
t delay response

45February 18, 2023 CS 417 © 2023 Paul Krzyzanowski

825 865
40 40 40

885 925 950 990

1060 1100 1120

20

1225
T2 – T1 = 1100-825 = 275 = delay + offset

T4 – T3 = 925-1120 = -195 = delay – offset

275 – (-195) = 470 = 2(offset)

offset = 470/2 = 235
Time is set to 1225 - offset

= 1225 – 235 = 990

delay = 40
offset = 235
... but we don’t know this yet

Time at the master

1160 1185

when we receive last msg

NTP vs. PTP
• Range
– NTP: nodes widely spread out on the Internet
– PTP: local area networks
• Usually implemented at the physical layer to eliminate OS & scheduling overhead

• Accuracy
– NTP usually several milliseconds on WAN
– PTP usually sub-microsecond on LAN (around 1 µs)
• PTP can be 10,000x more precise than NTP!

46February 18, 2023 CS 417 © 2023 Paul Krzyzanowski

The End

February 18, 2023 47CS 417 © 2023 Paul Krzyzanowski

