
CS 417 – DISTRIBUTED SYSTEMS

Paul Krzyzanowski

Week 2: Part 3
Examples of RPC Systems

© 2023 Paul Krzyzanowski. No part of this
content may be reproduced or reposted in
whole or in part in any manner without the
permission of the copyright owner.

January 30, 2023 © 2023 Paul Krzyzanowski 2

Three generations (roughly)

Remote Procedure Calls
Remote Objects
Web Services

ONC (Sun) RPC

3January 30, 2023 © 2023 Paul Krzyzanowski

ONC (Sun) RPC

• RPC for Unix System V, Linux, BSD, macOS
– Created by Sun (now Oracle)
– ONC = Open Network Computing
• The consortium of companies that supported the standard

– Defined in RFC 1831 (1995), RFC 5531 (2009)
– Remains in use mostly because of NFS (Network File System)

• Interfaces defined in an Interface Definition Language (IDL)

• IDL compiler is rpcgen

4January 30, 2023 © 2023 Paul Krzyzanowski

Sample IDL file
name.x

program GETNAME {
version GET_VERS {

long GET_ID(string<50>) = 1;
string GET_ADDR(long) = 2;

} = 1; /* version */
version GET_VERS2 {

long GET_ID(string<50>) = 1;
string GET_ADDR(string<128>) = 2;

} = 2; /* version */
} = 0x31223456;

Interface definition: version 2

5January 30, 2023 © 2023 Paul Krzyzanowski

Why is versioning important?

rpcgen

rpcgen name.x

produces:
– name.h header
– name_svc.c server skeleton (stub)
– name_clnt.c client stub (proxy)
– [name_xdr.c] optional XDR data conversion routines

• Function names derived from IDL function names and version numbers

• Client gets pointer to result
– Allows it to identify failed RPC (null return)
– Reminder: C doesn’t have exceptions!

6January 30, 2023 © 2023 Paul Krzyzanowski

What goes on in the system: server

Start server
– Server skeleton creates a socket and binds any available local port to it
– Calls a function in the RPC library:
• svc_register to register program #, port #, protocol (TCP/UDP)
• Contacts the port mapper, rpcbind:
– Name server
– Keeps track of {program #, version #, protocol} ® port # bindings

– Server then listens and waits to accept connections

7January 30, 2023 © 2023 Paul Krzyzanowski

rpcbind
(RPC name server)

Server
process

svc_register

Port X

Port 111

What goes on in the system: client

Client calls clnt_create with:
– Name of server
– Program #
– Version #
– Protocol (TCP or UDP)

clnt_create contacts port mapper on that server to get the port for that interface
– early binding – done once, not per procedure call

Communications
– Marshaling to XDR format

(eXternal Data Representation)
• Binary format using

implicit typing

rpcbind
(RPC name server)

Server
process

svc_register

Port X

Port 111

Client
process

clnt_create
Port X

8January 30, 2023 © 2023 Paul Krzyzanowski

ONC RPC Advantages

• Don’t worry about getting a unique transport address (port)
– But with you need a unique program number per server
– Greater portability

• Transport independent
– Protocol can be selected at run-time

• Application does not have to deal with maintaining message boundaries,
fragmentation, reassembly

• Applications need to know only one transport address
– Port mapper (rpcbind process)

• Function call model can be used instead of send/receive

• Versioning support between client & server
January 30, 2023 © 2023 Paul Krzyzanowski 9

DCE RPC

10January 30, 2023 © 2023 Paul Krzyzanowski

http://www.opengroup.org/dce/

DCE RPC

• Similar to ONC RPC

• Interfaces written in an Interface Definition Notation (IDN)
– Definitions look like function prototypes

• Run-time libraries
– One for TCP/IP and one for UDP/IP

• Authenticated RPC support with DCE security services

• Integration with DCE directory services to locate servers

11January 30, 2023 © 2023 Paul Krzyzanowski

Unique IDs

ONC RPC required a programmer to pick a “unique” 32-bit number

DCE: get unique ID with the uuidgen command
– Generates prototype IDN file with a 128-bit Unique Universal ID (UUID)
– 10-byte timestamp with version number
– 6-byte node identifier (ethernet address on ethernet systems)

12January 30, 2023 © 2023 Paul Krzyzanowski

IDN compiler

Similar to rpcgen:

Generates header, client stub, and server skeleton

13January 30, 2023 © 2023 Paul Krzyzanowski

Service lookup

Sun RPC requires client to know name of server

DCE allows several machines to be organized into an administrative entity
cell (collection of machines, files, users)

Cell directory server
Each machine communicates with it for cell services information

14January 30, 2023 © 2023 Paul Krzyzanowski

Cells & the cell directory server
cell rutgers.edu cell poopybrain.com

cell directory server cell directory server
January 30, 2023 © 2023 Paul Krzyzanowski 15

DCE service lookup

client cell
directory service

Request service
lookup from cell
directory server

Return server machine
name

service?

server

16January 30, 2023 © 2023 Paul Krzyzanowski

DCE service lookup

client cell
directory service

Connect to endpoint
mapper service and get
port binding from this local
name server

local
dir service

SERVER

service?

port

dced

17January 30, 2023 © 2023 Paul Krzyzanowski

DCE service lookup

client cell
directory service

Connect to service and
request remote procedure
execution

local
dir service

SERVER

RPC
service

dced

18January 30, 2023 © 2023 Paul Krzyzanowski

Marshalling
Standard formats for data
– NDR: Network Data Representation

Goal
– Multi-canonical approach to data conversion
• Fixed set of alternate representations
• Byte order, character sets, and floating-point representation can assume one of

several forms
• Sender can (hopefully) use native format
• Receiver may have to convert

19January 30, 2023 © 2023 Paul Krzyzanowski

What’s Good
• DCE RPC improved Sun RPC
– Universally Unique ID (UUID)
– Multi-canonical marshalling format
– Cell of machines with a cell directory server
• No need to know which machine provides a service

20January 30, 2023 © 2023 Paul Krzyzanowski

January 30, 2023 © 2023 Paul Krzyzanowski 21

The next generation of RPCs
Distributed objects:
support for object-oriented languages
DOA: Distributed Object Architecture

Microsoft COM+ (DCOM)

22January 30, 2023 © 2023 Paul Krzyzanowski

Microsoft DCOM/COM+

COM+: introduced with Windows 2000
– Unified COM and DCOM plus support for transactions, resource

pooling, publish-subscribe communication

Extends Component Object Model (COM) to allow objects to
communicate between machines

23January 30, 2023 © 2023 Paul Krzyzanowski

DDE
Dynamic Data

Exchange

1987

OLE
Object Linking &

Embedding

1990

COM
Component Object

Model

1992

DCOM
Distributed COM

1996

COM+
DCOM++

2000
.NET

Framework

2002

WCF
Windows Communication Foundation

2007-…

Activation on server
Service Control Manager (SCM)
– Started at system boot. Functions as RPC server
– Maintains database of installed services
– Starts services on system startup or on demand
– Requests creation of object on server

Surrogate process runs components: dllhost.exe
– Process that loads DLL-based COM objects

One surrogate can handle multiple clients simultaneously

24January 30, 2023 © 2023 Paul Krzyzanowski

Beneath COM+

Data transfer and function invocation via Object RPC (ORPC)

• Small extension of the DCE RPC protocol

Standard DCE RPC messages plus:
– Interface pointer identifier (IPID)
• Identifies interface and object where the call will be processed
• Referrals: can pass remote object references

– Versioning & extensibility information

25January 30, 2023 © 2023 Paul Krzyzanowski

Marshalling
• Marshalling mechanism: NDR

same Network Data Representation used by DCE RPC
– One new data type added: represents a marshaled interface
• Allows one to pass interfaces to objects

• Remember: NDR is multi-canonical
– Efficient when both systems have the same architecture

26January 30, 2023 © 2023 Paul Krzyzanowski

MIDL
MIDL = Microsoft Interface Definition Language

MIDL files are compiled with an IDL compiler

DCE IDN + object definitions

Generates C++ code for marshalling, unmarshalling, & stubs

– Client side is called the proxy
– Server side is called the stub Both are COM objects that are loaded

by the COM libraries as needed:
the application loads the client COM
object, which contacts the server to
load the server COM object

27January 30, 2023 © 2023 Paul Krzyzanowski

COM+ Distributed Garbage Collection
Object lifetime controlled by remote reference counting
– RemAddRef, RemRelease calls
– Object elided when reference count = 0

28January 30, 2023 © 2023 Paul Krzyzanowski

COM+ Distributed Garbage Collection
Abnormal client termination
– Insufficient number of RemRelease messages sent to server
– Object will not be deleted

In addition to reference counting:
Client Pinging
– Server has pingPeriod, numPingsToTimeOut
– Background client process sends ping set
• IDs of all remote objects used on that server

– If ping period expires with no pings received, all references are cleared

29January 30, 2023 © 2023 Paul Krzyzanowski

Microsoft DCOM/COM+ Contributions

• Fits into Microsoft COM model

• Support for references to instantiated objects

• Generic server hosts dynamically loaded objects
– Requires unloading objects (dealing with dead clients)
– Reference counting and pinging

• But… COM+ was a Microsoft-only solution
– And it did not work well across firewalls because of dynamic ports

January 30, 2023 © 2023 Paul Krzyzanowski 30

Java RMI

31January 30, 2023 © 2023 Paul Krzyzanowski

Java RMI
• Java language had no mechanism for invoking remote methods

• 1995: Sun added extension
– Remote Method Invocation (RMI)
– Allow programmer to create distributed applications where methods of

remote objects can be invoked from other JVMs

32January 30, 2023 © 2023 Paul Krzyzanowski

RMI components

Client
– Invokes method on remote object

Server
– Process that owns the remote object

Object registry
– Name server that relates objects with names

33January 30, 2023 © 2023 Paul Krzyzanowski

Interoperability
RMI is built for Java only!
– No goal of OS interoperability
– No language interoperability
– No architecture interoperability

No need for external data representation
– All sides run a JVM

Benefit: simple and clean design

34January 30, 2023 © 2023 Paul Krzyzanowski

RMI similarities
Similar to local objects
– References to remote objects can be passed as parameters

(not as pointers, of course)
• You can execute methods on a remote object

– Objects can be passed as parameters to remote methods

– Object can be cast to any of the set of interfaces supported by the
implementation
• Operations can be invoked on these objects

35January 30, 2023 © 2023 Paul Krzyzanowski

RMI differences
• Objects (parameters or return data) passed by value

– Changes will visible only locally

• Remote objects are passed by reference

– Not by copying remote implementation

– The “reference” is not a pointer. It’s a data structure:
{ IP address, port, time, object #, interface of remote object }

• RMI generates extra exceptions

36January 30, 2023 © 2023 Paul Krzyzanowski

Classes to support RMI
• remote class:
– One whose instances can be used remotely
– Within its address space: regular object
– Other address spaces:
• Remote methods can be referenced via an object handle

• serializable class:
– Object that can be marshaled
– Support serialization of parameters or return values
– If a parameter is a remote object, only the object handle is copied

37January 30, 2023 © 2023 Paul Krzyzanowski

Classes to support RMI
• remote class:
– One whose instances can be used remotely
– Within its address space: regular object
– Other address spaces:
• Remote methods can be referenced via an object handle

• serializable class:
– Object that can be marshaled
– Support serialization of parameters or return values
– If a parameter is a remote object, only the object handle is copied

38

needed for remote objects

needed for parameters

January 30, 2023 © 2023 Paul Krzyzanowski

Stub & Skeleton Generation
• Automatic stub generation since Java 1.5
– Need stubs and skeletons for the remote interfaces
– Automatically built from java files
– Pre 1.5 (still supported) generated by separate compiler: rmic

• Auto-generated code:
– Skeleton
• Server-side code that calls the actual remote object implementation

– Stub
• Client-side proxy for the remote object
• Communicates method invocations on remote objects to the server

39January 30, 2023 © 2023 Paul Krzyzanowski

Naming service
We need to look an object up by name

Get back a remote object reference to perform remote object invocations

Object registry does this: rmiregistry running on the server

40January 30, 2023 © 2023 Paul Krzyzanowski

Server
Register object(s) with Object Registry

Stuff obj = new Stuff();
Naming.bind("MyStuff", obj);

January 30, 2023 © 2023 Paul Krzyzanowski 41

Client
Client contacts rmiregistry to look up the name

rmiregistry service returns a remote object reference.

lookup method gives reference to local stub.

The stub now knows where to send requests

Invoke remote method(s):

test.func(1, 2, "hi");

MyInterface test = (MyInterface)
Naming.lookup("rmi://www.pk.org/MyStuff");

January 30, 2023 © 2023 Paul Krzyzanowski 42

Java RMI infrastructure

bindlookup

remote
reference

serialized arguments

marshal stream

registry

43

Client

Client Stub

“remote” call

Remote Reference Layer Remote Reference Layer

Transport Layer Transport Layer

Skeleton

Remote
object

Client Server
January 30, 2023 © 2023 Paul Krzyzanowski

RMI Distributed Garbage Collection

• Lease-based garbage collection
– Two operations: dirty and clean

• Local JVM sends a dirty call to the server JVM when the object is in use
– The dirty call is refreshed based on the lease time given by the server

• Local JVM sends a clean call when there are no more local references to the
object

• Unlike DCOM:
no incrementing/decrementing of references

44January 30, 2023 © 2023 Paul Krzyzanowski

Python RPyC

45February 5, 2023 © 2021 Paul Krzyzanowski

RPC in Python
• Various implementations: PyRO, PyInvoke, RPyC, ZeroRPC

• What helps Python achieve transparency
– Inspection of live objects through the inspect module
• Examine the contents of a class, retrieve source code for a method, and extract the

argument list for a function

• General idea of implementing RPC on Pythin
– Create a connection using an RPC object
– Then invoke remote methods using that object

February 5, 2023 CS 417 © 2022 Paul Krzyzanowski 46

RPyC Goals
• Transparent RPC interface
– No definition files, stub compilers, name servers, transport services

• Symmetric operation
– Both sides can invoke RPCs on each other – enables callback functions

• Server
– RPyC ThreadedServer started on the server program
– Binds to a default port (18812) or you specify the host's IP address and port

• Client
– Connects to the server
– Performs remote operations through the modules property, which exposes the server

module's namespace

February 5, 2023 CS 417 © 2022 Paul Krzyzanowski 47

Serialization: passing data
• By value
– Simple types (immutable objects – strings, ints, tuples)
• Sent directly to the remote side

• By reference
– Objects: reference (object name) to an object is passed
• Remote contacts the client to access attributes and invoke methods on these objects
• Changes will be reflected onto actual object

– Enables passing of location-sensitive objects, like files or other OS resources
• Remote process can write to the stdout of a local process by getting its sys.stdout

– Implementation: netrefs = transparent object proxies.
• Local objects that forward all operations to the corresponding remote object
• They make remote objects look & feel like local objects.

February 5, 2023 CS 417 © 2022 Paul Krzyzanowski 48

Stubs (object proxies)
• Client creates local proxy objects for remote modules
– Allows for transparent access
– Reference wrapped in a special object called a proxy that looks like the

actual object
– Any operation on the proxy is delivered to the target
– Client is unaware of this

• Synchronous & asynchronous calls
– Synchronous: code that issues the operation and waits for a return
– Asynchronous: immediate return, notification when complete
• Calls can be made asynchronous by wrapping the proxy with an asynchronous

wrapper

February 5, 2023 CS 417 © 2022 Paul Krzyzanowski 49

Services & security
• RPyC is built around services
– Each end of the connection exposes a service that is responsible for the policy
– Policy = set of supported remote operations

• Services are classes that derive from rpyc.core.service.Service and
define exposed methods
– Methods whose names begin with exposed_ or use the @rpyc.exposed decorator
– All exposed members of a service class will be available to the other side

February 5, 2023 CS 417 © 2022 Paul Krzyzanowski 50

Exposed methods in a service
Example from RPyC documentation

February 5, 2023 CS 417 © 2022 Paul Krzyzanowski 51

import rpyc

class CalculatorService(rpyc.Service):
def exposed_add(self, a, b):

return a + b
def exposed_sub(self, a, b):

return a - b
def exposed_mul(self, a, b):

return a * b
def exposed_div(self, a, b):

return a / b
def foo(self):

print("foo")

import rpyc

conn = rpyc.connect("hostname", 12345)
x = conn.root.add(4,7)
assert x == 11

try:
conn.root.div(4,0)

except ZeroDivisionError:
pass

Server Client

Simple RPyC program

February 5, 2023 CS 417 © 2022 Paul Krzyzanowski 52

import rpyc
from rpyc.utils.server import ThreadedServer

@rpyc.service
class TestService(rpyc.Service):

@rpyc.exposed
def add(self, a, b):

return a+b

@rpyc.exposed
def sub(self, a, b):

return a - b

@rpyc.exposed
def whoami(self):

return 'calculator'

print('starting server')
server = ThreadedServer(TestService, port=12345)
server.start()

import rpyc

conn = rpyc.connect('localhost', 12345)

print(conn.root.add(5,6))
print(conn.root.sub(10,4))
print(conn.root.whoami())

Server Client

On the server, run
python3 ./calcserver.py

On the client, run
python3 ./calcserver.py

The End

January 30, 2023 53© 2023 Paul Krzyzanowski

