
Distributed Systems
Exam 3 Review – Spring 2020

Paul Krzyzanowski

Rutgers University

Spring 2020

1April 30, 2020 © 2020 Paul Krzyzanowski



Note
Your questions and your answers are most likely in a different order 
than listed here.

May 1, 2020 © 2020 Paul Krzyzanowski 2



The Google search architecture favored the use of:
a.Low-cost computers.
b.The fastest available processors.
c.Highly-reliable computers.
d.Fault-tolerant disks.

April 30, 2020 © 2020 Paul Krzyzanowski 3

The Google cluster architecture that was developed for Google search (among 
other services) focused on the price-performance ratio, factoring in the cost the 
computer, power efficiency, and cost of operation.

They favored placing reliability into the software rather than the hardware.



Sharding an index for a Google search:
a.Converts a big search into many small searches.
b.Makes search fault tolerant by creating replicas.
c.Makes a single search span across multiple data centers.
d.Separates index servers from document servers.

April 30, 2020 © 2020 Paul Krzyzanowski 4

Sharding an index breaks a huge (10s or 100s of TB) index into lots of smaller 
indices. Searching for words can be done quickly and in parallel among these
small indices. Results can then be merged.

• Index & document files are replicated but that’s not the point of sharding.
• Files are replicated across data centers but an individual search stays local.
• Index & document servers are separate files but that’s not the point of 

sharding.



If a reduce worker fails in a MapReduce job:

a.Only that failed reduce worker must restart.
b.All reduce workers must restart.
c.All map workers and the failed reduce worker must restart.
d.The entire job must restart from its last checkpoint.

April 30, 2020 © 2020 Paul Krzyzanowski 5

A reduce worker contacts all of the master workers for the (key,value) data it
needs for its partition. There is no need to recreate that data.

• Since reduce workers don’t need to communicate with each other, there is no 
need to restart any other reduce worker.

• The map workers are done. No need to restart them.
• There is no checkpointing in MapReduce.



A reduce function on a reduce worker in MapReduce can start running:

a.When every map worker has finished.
b.When at least one map worker has generated a key for that reduce 

function.
c.At the same time as all the map workers.
d.When at least one map worker finishes.

April 30, 2020 © 2020 Paul Krzyzanowski 6

Map workers produce intermediate files that are partitioned for all the reduce 
workers. Those files must be complete before the master starts any reduce
tasks. Each reduce worker contacts all the master workers for the (key,value)
data it needs for its partition.

• A reduce worker needs ALL of the (key, value) data for its partition and we 
don’t know whether any map worker still has another (key, value) pair to 
generate for that reduce worker until it is finished.

• A reduce function cannot be invoked until we have all the values for a key.
• Other map workers may generate (key, value) data for the reduce worker.



What is the importance of choosing a good row key in Bigtable?

a.Take advantage of the locality of adjacent rows.
b.Avoid use of duplicate keys.
c.Enable rapid search for an arbitrary row based on its key.
d.Make queries user friendly for easier debugging.

April 30, 2020 © 2020 Paul Krzyzanowski 7

Bigtable keeps its data sorted by the row key. Rows are stored next to each 
other in a tablet – except occasionally when we have to jump to the next tablet.

• Bigtable shouldn’t support duplicate keys, just like a database won’t support 
duplicate primary keys for a table.

• Bigtable uses a balanced tree to find a range of rows. Key choice will not 
change how rapid that search is.

• Making queries user friendly doesn’t really make sense.



Spanner enables lock-free reads:

a.By having a transaction read data that is no newer than some 
chosen time. 

b.Only in the case that there are no currently running transactions 
that have write locks.

c.Under the condition that there are no other read locks or write locks 
for the needed data.

d.In cases where a parent transaction already grabbed all the 
necessary locks.

April 30, 2020 © 2020 Paul Krzyzanowski 8

Spanner supports ACID transactions but also snapshot reads. These do not 
require locks because all the data read is ≤ some specified point in time. 
Modifications to that data will result in newer versions but spanner stores 
multiple versions.
.



If the network connection between two data centers that run spanner is broken:

a.Spanner transactions may have to wait until the connection is 
restored.

b.Transactions in one of the data centers may access stale data.
c.Any outstanding transactions will be aborted.
d.Transactions will still be permitted to commit even if they cannot 

access some data.

April 30, 2020 © 2020 Paul Krzyzanowski 9

Spanner behaves as though it violates the CAP Theorem. Instead of an 
eventual consistency model, which became popular to offer high availability, it 
appears to offer high availability AND consistency. 

However, you cannot violate the CAP Theorem, and Spanner provides 
consistency as long as there are no partitions. Should a network partition occur, 
Spanner chooses consistency over availability, so transactions may have to 
wait for the partition to be repaired. Google addresses this largely by having 
multiple redundant links between servers and between datacenters.



A Pregel job is complete when:

a.Every vertex votes to halt and no vertex sends a message to 
another vertex.

b.Every vertex votes to halt.
c.No vertex receives any more incoming messages to process.
d.A majority (over 50%) of vertices agree to halt.

April 30, 2020 © 2020 Paul Krzyzanowski 10

In Pregel, a vertex may vote to halt when it is done. However, another vertex sent 
it a message, the framework will keep running and the vertex will process its input. 
If it chooses to do so, it can vote to halt again. We can have a situation where
every vertex voted to halt but some vertex also sent a message to another. That 
will cancel the halt. 

• Every vertex voting to halt is not sufficient.
• Not receiving incoming messages doesn’t guarantee the vertex will vote to halt.
• Halting isn’t done via a majority vote.



For Hive to create the proper code for a MapReduce job, it gets information 
about the structure of the data from the:

a.Metastore.
b.Driver.
c.Hadoop Distributed File System (HDFS).
d.Compiler.

April 30, 2020 © 2020 Paul Krzyzanowski 11

The metastore is a small database that describes the structure of data so Hive 
can generate code to extract it and parse it properly. 

• The driver receives HiveQL queries and manages the session that 
coordinates the progress of the execution of the query.

• HDFS is typically the file system that stores the data HiveQL will work on.
• The compiler converts the HiveQL query into a series of steps that will be 

performed by MapReduce.



A resilient distributed dataset (RDD) in Spark:

a.Cannot be modified.
b.Can have transformations but not actions applied to it.
c.Can have actions but not transformations applied to it.
d.Is persistent and must be written to a file rather than cached in 

memory.

April 30, 2020 © 2020 Paul Krzyzanowski 12

RDDs are immutable. This means they cannot be modified. If you want to make 
changes, you do so by applying a transformation, which creates a new RDD. 

• RDDs can have both transformations and actions applied to them. An action 
is a finalizing operation prior to returning data to the user. Transformations 
create other RDDs.

• RDDs are not necessarily persistent. They are generally stored in memory
and, if missing, can be regenerated from the transformation that was used to 
create them.



Spark’s lazy evaluation means that the Spark framework will:

a.Start from the final action and figure out what transformation 
is needed to generate data for that action.

b.Shard the input data so multiple workers can process it in parallel.
c.The results of one transformation will be completed before the next 

one starts.
d.Break a complex problem into a series of transformations and 

actions.

April 30, 2020 © 2020 Paul Krzyzanowski 13

Spark’s lazy evaluation means it works backwards, starting from the action. 
Each RDD that is missing triggers execution of the transformation that creates 
it.

• RDDs are sharded but that’s not what lazy evaluation does.
• A transformation may be able to start before another is complete, but this has 

nothing to do with lazy evaluation.
• Breaking a problem into a series of transformations and actions is a task for 

the programmer (or a query compiler) and not a facet of lazy evaluation.



A technique shared in both Adaptive Bitrate Coding (ABR) and Spark 
Streaming is:

a.Break a continuous stream of data into chunks.
b.Use a variable-size buffer to handle the mismatch between input 

and output data rates.
c.Use feedback from the client consuming the data to change how 

the data is processed.
d.Partition the data so that it can be processed by multiple systems in 

parallel.

April 30, 2020 © 2020 Paul Krzyzanowski 14

Both ABR and Spark Streaming break streaming data into chunks that 
represent a window of time. In the case of Spark Streaming, the data in that 
chunk can be processed as an RDD. In the case of ABR, we have a chunk of 
video data that can be encoded in a variety of bitrates to accommodate 
different connections to the end user.



If a caching server gets heavily loaded, a Content Delivery Network (CDN) is 
likely to:

a.Return alternate addresses to new DNS (Domain Name System) 
server queries.

b.Forward the request to a different server.
c.Pass the request directly through to the origin.
d.Drop the request and hope the client retries when the server is less 

busy.

May 1, 2020 © 2020 Paul Krzyzanowski 15

CNDs (such as Akamai) use a load balancing DNS. In addition to geographic 
distribution to find the closed data center, the DNS server can perform load 
shedding, where it will not return IP addresses of heavily-loaded servers.

• Requests are not routed from server-to-server.
• User requests are only passed to the origin if they require dynamic content.
• Requests are not dropped.



Under what condition can you download useful content from a leecher in 
BitTorrent?

a.If it has any block of content that you don’t have.
b.If a leecher started prior to your download, even if it is still 

downloading content.
c.Never; content should be downloaded from seeders.
d.f you need to re-download an earlier block that was discovered to 

be corrupt.

May 1, 2020 © 2020 Paul Krzyzanowski 16

There are three answers that work. You needed to figure out the best one. The 
whole point of bittorrent is that each leecher downloads a random collection of 
blocks. Hence, even if a leecher started to run after your leecher, it may very well
have downloaded blocks you can use.

• A leecher starting before yours is not a necessary condition and there is always a 
chance it will not have content you can use (its downloads may be slower than 
yours and it has no blocks you need).

• You may need to re-download a block if it is corrupt, but you will realize that as
soon as a block download has completed rather than go check earlier blocks.



An advantage of using query flooding in a peer-to-peer network is:

a.It does not rely on a centralized database.
b.It scales well, providing increased performance as more peers are 

added.
c.Messages contain a hop count to avoid forwarding loops.
d.Queries have a variable latency, so you get rapid responses from 

neighbors.

May 1, 2020 © 2020 Paul Krzyzanowski 17

Flooding generally isn’t desirable. It bothers servers needlessly and takes time 
because of query forwarding. One advantage it does have is the lack of a 
central server. This makes it difficult to shut down as a peer-to-peer service.

• Flooding scales poorly; performance usually drops with more peers.
• You want to avoid forwarding loops but this isn’t an advantage to flooding.
• Variable latency isn’t an advantage either.



An advantage of clustered file systems is:
a.File data is consistent when accessed from multiple servers. 
b.They spread data among multiple systems for high scalability.
c.Metadata is separated from file data.
d.They eliminate the need for a distributed lock manager.

May 1, 2020 © 2020 Paul Krzyzanowski 18

A clustered file system is a special type of file system that is installed locally on each 
computer and understands that it is making block read and block write requests to a shared 
disk. Normal file systems can read and write blocks without any concern that some other 
system will modify them since the operating system owns the disk. With network attached 
storage, you send high-level RPCs (read bytes from a file, delete a file, etc.) that the file 
system on the server operates on. With cluster file systems, the file system on your local disk 
must use a distributed lock manager at certain times to grab locks for certain blocks to 
ensure that another operating system doesn’t modify the same data at the same time.

• Spreading data among multiple computers is a key method of addressing scalability. 
However, the definition of a clustered file system does not have anything to do with setting 
up a cluster of computers.

• This may be done in some implementations of a cluster file system but isn’t expected.
• Cluster file systems require a DLM to avoid conflicting modifications of the same block.



Fencing can be useful in a cluster because:
a.We cannot distinguish a failed system from communication 

delays. 
b.We can improve the security of a system by isolating security-

critical components.
c. It enables multi-directional failover.
d.It avoids the need for cascading failover.

May 1, 2020 © 2020 Paul Krzyzanowski 19

A big problem with asynchronous networks (such as the Internet) is that we 
cannot reliably distinguish non-responding systems from delayed messages. 
We saw that this was addressed in virtual synchrony by taking suspect systems 
out of the group. Fencing is a way of isolating a system from the cluster.

• Fencing not a form of firewall to isolate security-critical parts from the rest of 
the cluster.

• Fencing has nothing to do with failover.



For Sophia to send a secret message to Emma, she would:
a.Encrypt it with Emma’s public key.
b.Encrypt it with Sophia’s private key.
c.Encrypt it it with Emma’s private key.
d.Encrypt it with Sophia’s public key.

May 1, 2020 © 2020 Paul Krzyzanowski 20

For Sophia to send a secret message to Emma, she needs to encrypt it in a 
way that only Emma would be able to decrypt. The thing that Emma has that 
nobody else has is Emma’s private key. Hence, Sophia has to encrypt the 
message with Emma’s public key.



Which is not an encryption algorithm?
a.DH Diffie-Hellman.
b.AES (Advanced Encryption Standard).
c.RSA (Rivest–Shamir–Adleman).
d.ECC (Elliptic Curve Cryptography).

May 1, 2020 © 2020 Paul Krzyzanowski 21

Diffie-Hellman is a key exchange algorithm, not an encryption algorithm.

• AES is the most popular symmetric encryption algorithm.
• RSA is the most widely-used public key encryption algorithm.
• ECC is a newer & generally faster public key encryption algorithm.



Systems often store password hashes to:
a.Enable validating a user without storing the user’s password. 
b.Enable passwords to be sent securely over an insecure network.
c.Make sure that the stored password has not been corrupted.
d.Make it difficult to perform a dictionary attack.

May 1, 2020 © 2020 Paul Krzyzanowski 22

Hashes are one-way functions. Given a hash, you cannot find an inverse 
function that would give you the original message. This makes them popular for 
storing passwords. A user can supply a password and the system can check if

hash(password) == stored_hash
but anyone who steals a password file will not be able to find passwords except 
by trying all permutations.

• The hashing of a password is done at the server. They don’t secure the 
network link. An attacker could just as easily sniff & send a password hash.

• They are not used as an integrity check for stored passwords.
• A dictionary attack is one where you try well-known passwords and dictionary 

words to break in. Hashing doesn’t make that more difficult.



A digital signature enhances a message authentication code because it:

a.Can only be created by a single party.
b.Uses a hash as an integrity check.
c. Is encrypted so that only trusted parties can validate it.
d.Cannot be reversed to reveal the message.

May 1, 2020 © 2020 Paul Krzyzanowski 23

A digital signature is encrypted with a user’s private key, ensuring that anyone 
who does not have that key will not be able to create the message. At the same 
time, anyone with access to the public key can verify the message. With 
message authentication codes, we need a shared key. Either party can create 
a valid MAC.

• MACs use hash functions too.
• Anyone can generally validate a digital signature since public keys are public. 

MACs, on the other hand, require a shared secret key.
• Hashes cannot be reversed. Hence, neither MACs nor digital signatures can

be reversed.



If an attacker steals your X.509 certificate, they can:

a.Authenticate you.
b.Impersonate you.
c.Extract your private key.
d.Ask the certification authority (CA) to revoke your identity.

May 1, 2020 © 2020 Paul Krzyzanowski 24

The term “attacker steals” was used for deception. There is nothing secret 
about an X.509 certificate. Every time you connect to a web site with https, you 
download someone’s X.509 certificate. It stores a public key & information that 
identifies the server. The public key can be used to authenticate the owner 
(send a nonce & ask the owner to encrypt it with their private key).

• To impersonate you, the attacker will need to replace your public key with 
their own so they will have the corresponding private key. That means they 
will need to be able to recreate the signature on the certificate, which 
requires knowing the private key of the certification authority (CA).

• Your private key is not in your certificate.
• Having a copy of someone’s certificate does not give you any rights in having 

the CA send any certificate revocation messages … or anything else.



MapReduce

You are given a data set of students. It contains the following fields: Name, 
Age, School, Grade
Explain, in pseudocode, how you would use MapReduce to list the average 
age of students below the ninth grade in each school:

map:

if (grade < 9) write(school, age)

reduce(school, ages)

write(school, sum(ages)/count(ages))

The map function passes through only the data of interest: the school and 
age of any student below the 9th grade. 
The school is the key so shat all we can group the ages per school. The 
reduce function is called once for each school (the key) and given a list of 
ages (values). It simply computes the average:

reduce(school, ages)

write(school, sum(ages)/count(ages))

April 30, 2020 © 2020 Paul Krzyzanowski 25



Alice (A) wants to create a fixed-size message integrity check for 
a message M that only Bob (B) can verify. What would she need 
to send in addition to the message M. The message is not 
secret.

Assume all public keys are shared. 
Use only hashes and public key cryptography and the notation

H(X) to hash a message X
ER(X) to encrypt X with R’s public key
Er(X) to encrypt a message X with a user R’s private key.

Multiple messages may be separated by commas: T, U, V.

A fixed-length integrity check would be a hash. To ensure that only Bob can verify 
the hash, Alice will encrypt it with his public key: EB(H(M))
Bob can validate the message by decrypting it with his private key and comparing 
the results to a hash of the message.

If Alice is concerned about an intruder modifying the code and the message, then 
Alice would need to encrypt her signature of the message: EB(Ea(M))
Bob validates that by decrypting the message with his private key, decrypting the 
result with Alice’s public key and comparing the results to the hash of the message.

May 1, 2020 © 2020 Paul Krzyzanowski 26



The end.

May 1, 2020 © 2020 Paul Krzyzanowski 27


