

CPU Voltage & Frequency Scaling

Dynamic CPU Frequency Scale

- Adjust the frequency of a CPU on the fly
- Conserve power & reduce heat (reduce need for a fan)
- Reduce # of instructions per time · Goal: use this when processes are not CPU bound
- · Examples of CPU support:

 - Intel SpeedStep
 - AMD PowerNow!, AMD Cool 'n' Quiet
 - ARM Intelligent Energy Manager (IEM)
- OS management of voltage/frequency control - Linux: cpuspeed (RedHat) or cpufrequtils (Ubuntu)

Managing CPU performance

Governors

- Pre-configured power schemes
- Loaded as kernel modules. Governors include:

 - cpufreq_performance: run at maximum speed (default)
 cpufreq_ondemand: dynamically increase/decrease based on load
 - Programmable threshold based on % CPU utilization
 - cpufreq_conservative: similar to ondemand but slower changes
 - cpufreq_powersave: run CPU at minimum speed
 - cpufreq userspace: allow user to configure speeds

Sleep & Hibernation

Sleep (standby) mode Stop processor execution, keep RAM powered

Hibernate mode

- Save memory state onto non-volatile storage (disk/flash)
- Most systems are shut off
 except USB/LAN/alarm/switch wake detection
- Suspend-to-disk
- Suspend-to-file

- Suspend-to-ram

- Hybrid
- Store contents to disk and then sleep
- If power to memory is lost then wake via disk restore
- Examples:
 Windows Vista Fast Sleep & Resume OS X Safe Sleep

Power Management: BIOS Support

Old interface: APM

- BIOS call; actions fully handled by hardware
- Most PCs support ACPI
 - Advanced Configuration and Power Interface - Fan control, dock/undock detection, temperature sensing, device control,
 - Intel provides a fixed function interface for control
 - Other systems are hardware-specific

Example

• Hit a sleep key, close lid, ...

- 1. Hardware interrupt interrupts CPU: general purpose event
- 2. OS interrupt handler
- 3. User-level power management daemon listens to events via /proc/acpi/events
- 4. User process decides that the action requires a suspend to RAM
- 5. Suspend to RAM initiated

Example

- · Hit a sleep key, close lid, ...

 - 5. Suspend to RAM initiated
 - a. Script/program does initial work: unloads various drivers that are not power-management-aware b. Initiate suspend by echoing the right state into /sys/power/state
 - E.g., echo "mem" >/svs/p
 - c. Kernel stops user-level actions (process execution)
 - d. Goes through each device: calls suspend methods on each active driver
 - e. Call ACPI methods: PTS (Prepare To Sleep), GTS (Go To Sleep)
 - f. Address of kernel wakeup code written to an address in the FADT Fixed Address Descriptor Table in the ACPI
 - g. Write values to ACPI to sequence the machine to *suspend* S3 state: shut the machine down but keep RAM on.

Example: Waking up

- 6. User presses the power button
 - BIOS start code invoked
 - BIOS start code invoked BIOS checks the ACPI status register: system was suspended to RAM Jumps to the programmed wakeup address Executes kernel-provided real-mode x86 code Restores register state, switches the CPU to protected mode Now the kernel is running
 - Kernel
 - · calls the ACPI WAK method
 - Resumes all drivers
 - · Restarts userspace (scheduling)
 - · The shell script that was running when we suspended resmes and reloads drivers

Tickless Kernel

- · Traditional kernel:
 - Periodic tick
 - Always ticking ... whether the processor is busy or not - Used for
 - Timer management
 - Time slice management
 SMP load balancing
 - Wakeup during idle is bad
 - Does not let CPU go to deep sleep states · Hurts battery life

Tickless Kernel

- Tickless kernel:
 - On-demand timer interrupts
 - Turn off periodic tick when the CPU is idle
 - Clock event wakeup programmed based on next event
- Keep the kernel quiet
 - Group timers to avoid multiple interrupts
 - Round timeout values
 - Defer the expiration of non-critical timers during idle

