
CS 416: Operating Systems Design April 13, 2015

© 2014-2015 Paul Krzyzanowski 1

Operating Systems

20. Protection

Paul Krzyzanowski

Rutgers University

Spring 2015

1 April 13, 2015 © 2014-2015 Paul Krzyzanowski

Protection & Security

• Security

– Prevention of unauthorized access to a system

• Prevent malicious or accidental access

• “access” may be:

– user login, a process accessing things it shouldn’t, physical access

• The access operations may be reading, destruction, or alteration

• Protection

– The mechanism that provides and enforces controlled access of

resources to processes

– A protection mechanism enforces security policies

2

Principle of Least Privilege

At each abstraction layer, every element (user, process, function) should

be able to access only the resources necessary to perform its task

• Even if an element is compromised, the scope of damage is limited

• Consider:

– Good: You cannot kill another user’s process

– Good: You cannot open the /etc/hosts file for writing

– Good: Private member functions & local variables in functions limit scope

– Violation: a compromised print daemon allows someone to add users

– Violation: a process can write a file even though there is no need to

– Violation: admin privileges set by default for any user account

• Least privilege is often difficult to define & enforce

3

Privilege Separation

Divide a program into multiple parts: high & low privilege components

• Example on POSIX systems

– Each process has a real and effective user ID

– Privileges are evaluated based on the effective user ID

• Normally, uid == euid

– An executable file may be tagged with a setuid bit

• chmod +sx filename

• When run: uid = user’s ID

 euid = file owner’s ID (without setuid, runs with user’s ID)

– Separating a program

1. Run a setuid program

2. Create a communication link to self (pipe, socket, shared memory)

3. fork

4. One of the processes will call seteuid(getuid()) to lower its privilege

4

Security Goals

• Authentication

– Ensure that users, machines, programs, and resources are properly

identified

• Integrity

– Verify that data has not been compromised: deleted, modified, added

• Confidentiality

– Prevent unauthorized access to data

• Availability

– Ensure that the system is accessible

5

The Operating System

The OS provides processes with access to resources

• Resource access attempts go through the OS

• OS decides whether access should be granted

– Rules that guide the decision = policy

Resource OS component

Processor(s) Process scheduler

Memory Memory Management + MMU

Peripheral devices Device drivers & buffer cache

Logical persistent data File systems

Communication networks Sockets

6

CS 416: Operating Systems Design April 13, 2015

© 2014-2015 Paul Krzyzanowski 2

Domains of protection

• Processes interact with objects

– Objects include:

 hardware (CPU, memory, I/O devices)

 software: files, processes, semaphores, messages, signals

• A process should be allowed to access only objects that it

is authorized to access

– A process operates in a protection domain

– Protection domain defines the objects the process may access and

how it may access them

7

Modeling Protection: Access Matrix

Rows: domains

Columns: objects

Each entry represents an access right of a domain on an object

objects

d
o
m

a
in

s
 o

f
p
ro

te
c
ti
o
n

F0 F1 Printer

D0
read read-write print

D1
read-write-

execute

read

D2 read-

execute

D3 read print

D4 print

8

Access Matrix: Domain Transfers

Switching from one domain to another is a configurable policy

objects

d
o
m

a
in

s
 o

f
p
ro

te
c
ti
o
n

F0 F1 Printer D0 D1 D2

D3 D4

D0
read read-

write

print – switch switch

D1
read-

write-

execute

read –

D2 read-

execute

switch –

D3 read print

D4 print

9

A process in D0 can switch to

running in domain D1

Access Matrix: Additional operations

Copy: allow delegation of rights

– Copy a specific access right on an object from one domain to

another

• Rights may specify either a copy or a transfer of rights

d
o
m

a
in

s
 o

f
p
ro

te
c
ti
o
n

F0 F1 Printer D0 D1 D2

D3 D4

D0
read read-

write

print – switch swtich

D1
read-

write-

execute

read* –

D2 read-

execute

swtich –

D3 read print

D4 print

A process executing in D1

can give a read right on

F1 to another domain

10

objects

Access Matrix: Additional operations

Owner: allow new rights to be added or removed

– An object may be identified as being owned by the domain

– Owner can add and remove any right in any column of the object

d
o
m

a
in

s
 o

f
p
ro

te
c
ti
o
n

F0 F1 Printer D0 D1 D2

D3 D4

D0
read

owner

read-

write

print – switch swtich

D1
read-

write-

execute

read* –

D2 read-

execute

swtich –

D3 read print

D4 print

A process executing in

D0 can give a read right

on F0 to domain D3 and

remove the execute right

from D1

objects

11

Access Matrix: Additional operations

Control: change entries in a row

– If access(i, j) includes a control right, then a process executing in

Domain i can change access rights for Domain j

d
o
m

a
in

s
 o

f
p
ro

te
c
ti
o
n

F0 F1 Printer D0 D1 D2

D3 D4

D0
read

owner

read-

write

print – switch swtich

D1
read-

write-

execute

read* – control

D2 read-

execute

swtich –

D3 read print

D4 print

A process executing in D1

can modify any rights in

domain D4

objects

12

CS 416: Operating Systems Design April 13, 2015

© 2014-2015 Paul Krzyzanowski 3

Implementing an access matrix

• A single table is usually impractical

– Big size: # domains (users) × # objects (files)

– Objects may come and go frequently

• Access Control List

– Associate a column of the table with each object

13

F0 F1 Printer D0 D1 D2

D3 D4

D0
read

owner

read-

write

print – switch swtich

D1
read-

write-

execute

read* –

D2 read-

execute

swtich –

D3 read print

D4 print

Implementing an access matrix

• Access Control List

– Associate a column of the table with each object

d
o
m

a
in

s
 o

f
p
ro

te
c
ti
o
n

objects

ACL for file F0

14

Example: Limited ACLs in POSIX systems

Problem: an ACL takes up a varying amount of space

(possibly a lot!)

– Won’t fit in an inode

UNIX Compromise:

– A file defines access rights for three domains:

• the owner, the group, and everyone else

– Permissions

• Read, write, execute, directory search

• Set user ID on execution

• Set group ID on execution

– Default permissions set by the umask system call

– chown system call changes the object’s owner

– chmod system call changes the object’s permissions

15

Example: Full ACLs in POSIX systems

• What if we really want a full ACL?

• Extended attributes: stored outside of the inode

– Hold an ACL

– And other name:value attributes

• Enumerated list of permissions on users and groups

– Operations on all objects:

• delete, readattr, writeattr, readextattr, writeextattr, readsecurity,

writesecurity, chown

– Operations on directories

• list, search, add_file, add_subdirectory, delete_child

– Operations on files

• read, write, append, execute

– Inheritance controls

16

F0 F1 Printer D0 D1 D2

D3 D4

D0
read

owner

read-

write

print – switch swtich

D1
read-

write-

execute

read* –

D2 read-

execute

swtich –

D3 read print

D4 print

Implementing an access matrix

Capability List

– Associate a row of the table with each domain

d
o
m

a
in

s
 o

f
p
ro

te
c
ti
o
n

objects

Capability list for domain D1

17

Capability Lists

• List of objects together with the operations allowed on the

objects

• Each item in the list is a capability: the operations allowed

on a specific object

• A process presents the capability along with a request

– Possessing the capability means that access is allowed

• A process cannot modify its capability list

18

CS 416: Operating Systems Design April 13, 2015

© 2014-2015 Paul Krzyzanowski 4

Access Control Models: MAC vs. DAC

• DAC: Discretionary Access Control

– A subject (domain) can pass information onto any other subject

– In some cases, access rights may be transferred

– Most systems use this

• MAC: Mandatory Access Control

– Policy is centrally controlled

– Users cannot override the policy

19

Multi-level Access Control

• Typical MAC implementations use a Multi-Level Secure (MLS)

access model

• Bell-LaPadula model

– Identifies the ability to access and communicate data

– Objects are classified into a hierarchy of sensitivity levels

• Unclassified, Confidential, Secret, Top Secret

– Each user is assigned a clearance

– “No read up; no write down”

• Cannot read from a higher clearance level

• Cannot write to a lower clearance level

• Works well for government information

• Does not translate well to civilian life

Top Secret

Secret

Confidential

Unclassified

N
o

 r
e

a
d

 u
p

N
o

 w
ri

te
 d

o
w

n

20

Confidential cannot read Secret

Confidential cannot write Unclassified

The End

21 4/13/2015 © 2014-2015 Paul Krzyzanowski

