CS 416: Operating Systems Design

Operating Systems

20. Protection

Paul Krzyzanowski

Rutgers University

April 13,2015

Protection & Security

* Security
— Prevention of unauthorized access to a system
« Prevent malicious or accidental access
« “access” may be:
— user login, a process accessing things it shouldn't, physical access
« The access operations may be reading, destruction, or alteration

* Protection
— The mechanism that provides and enforces controlled access of
resources to processes
— A protection mechanism enforces security policies

Spring 2015
. J
Principle of Least Privilege
At each abstraction layer, every element (user, process, function) should
be able to access only the resources necessary to perform its task
« Even if an element is compromised, the scope of damage is limited
+ Consider:
— Good: You cannot kill another user’s process
— Good: You cannot open the /etc/hosts file for writing
— Good: Private member functions & local variables in functions limit scope
— Violation: a compromised print daemon allows someone to add users
— Violation: a process can write a file even though there is no need to
— Violation: admin privileges set by default for any user account
« Least privilege is often difficult to define & enforce
.
Security Goals
* Authentication
— Ensure that users, machines, programs, and resources are properly
identified
* Integrity
— Verify that data has not been compromised: deleted, modified, added
« Confidentiality
— Prevent unauthorized access to data
* Availability
— Ensure that the system is accessible
.

© 2014-2015 Paul Krzyzanowski

Privilege Separation

Divide a program into multiple parts: high & low privilege components

+ Example on POSIX systems
— Each process has a real and effective user ID
— Privileges are evaluated based on the effective user ID
« Normally, vid == euid
— An executable file may be tagged with a setuid bit
+ chmod +sx filename
« Whenrun: uid = user’s ID
euid = file owner’s ID (without setuid, runs with user’s ID)
— Separating a program
1. Run a setuid program
2. Create a communication link to self (pipe, socket, shared memory)
3. fork
4. One of the processes will call seteuid(getuid()) to lower its privilege

The Operating System

The OS provides processes with access to resources

Resource OS component

Processor(s) Process scheduler
Memory Memory Management + MMU

Device drivers & buffer cache

Peripheral devices

Logical persistent data File systems

Communication networks Sockets

* Resource access attempts go through the OS

» OS decides whether access should be granted
— Rules that guide the decision = policy

CS 416: Operating Systems Design

Domains of protection

April 13, 2015

* Processes interact with objects

— Objects include:
hardware (CPU, memory, I/O devices)
software: files, processes, semaphores, messages, signals

» A process should be allowed to access only objects that it
is authorized to access
— A process operates in a protection domain

— Protection domain defines the objects the process may access and
how it may access them

Modeling Protection: Access Matrix

Rows: domains
Columns: objects

Each entry represents an access right of a domain on an object

objects

Fo Fy Printer
c
2 Dy read read-write print
3
° D, | read-write- read
a execute
S D, read-
a execute
g D read print
© D, print

Access Matrix: Domain Transfers

Switching from one domain to another is a configurable policy

A process in D, can switch to
running in domain D,

objects
Fo F, | Printer | D, D, D, D,

c
=}
© Dy read read- print = switch switch
2 write
IS
S | D,| read | read -
5 write-
» execute
c
‘T D, | read- switch -
£ execute
S
° Dy read print

D, print

Access Matrix: Additional operations

Copy: allow delegation of rights
— Copy a specific access right on an object from one domain to

another
« Rights may specify either a copy or a transfer of rights
objects
Fo F, | Printer | D, | D, D, D D,
5
g D, | read :zra‘[t print — | switch | s\ oS OE oD
IS a e a read right o
5 | D,| read | read | .
5 write- e 0 ano oma
@ execute
c
@ D, read- swtich -
£ execute
o
° D; read print
D, print

Access Matrix: Additional operations

Owner: allow new rights to be added or removed
— An object may be identified as being owned by the domain
— Owner can add and remove any right in any column of the object

objects
Fo F Printer | D, D; D, Ds D,

c
S
3 read rint ..
§ Do owner —— E A process executing in
5 | D,| read D, can give a read right
5 write- on F, to domain D and
© execute remove the execute right
‘T | D,| read- swtich from D,
£ execute
o
T | Dy read print

D, print

© 2014-2015 Paul Krzyzanowski

Access Matrix: Additional operations

Control: change entries in a row

— If access(i, j) includes a control right, then a process executing in
Domain i can change access rights for Domain j

objects

Fo Fy Printer | D, D, D, Dy D,
c
S
S | Dp| read | read- | print | - | switch | swiich
95’ owner | write
S | D,| read read* = control
S write-
P execute
c
@ D, read-
g EXECHle A process executing in Dy
© | Ds read print can modify any rights in

D, print domain D,

CS 416: Operating Systems Design April 13, 2015

Implementing an access matrix Implementing an access matrix
» Asingle table is usually impractical * Access Control List
— Big size: # domains (users) x # objects (files) — Associate a column of the table with each object

— Objects may come and go frequently

objects
« Access Control List F, Printer D, D, D, D, D,
c
— Associate a column of the table with each object S = —— - -
§ e = ACL for file Fy
= read- | read*
5 write-
P execute
2
T read- swtich -
£ execute
o
°© read print
print
J
Example: Limited ACLs in POSIX systems Example: Full ACLs in POSIX systems
Problem: an ACL takes up a varying amount of space * What if we really want a full ACL?
i 1 . . .
(possibly alott) « Extended attributes: stored outside of the inode
— Won'tfitin an inode — Hold an ACL
UNIX Compromise: — And other name:value attributes
— Afile defines access rights for three domains: + Enumerated list of permissions on users and groups
« the owner, the group, and everyone else R A
o — Operations on all objects:
— Permissions

N " h « delete, readattr, writeattr, readextattr, writeextattr, readsecurity,
* Read, write, execute, directory searcl writesecurity, chown

+ Set user ID on execution
« Set group ID on execution
— Default permissions set by the umask system call

— Operations on directories
« list, search, add_file, add_subdirectory, delete_child
— Operations on files

— chown system call changes the object’s owner + read, write, append, execute
— chmod system call changes the object’s permissions — Inheritance controls
J
Implementing an access matrix Capability Lists
Capability List « List of objects together with the operations allowed on the
— Associate a row of the table with each domain objects

+ Each item in the list is a capability: the operations allowed
objects on a specific object

» A process presents the capability along with a request
— Possessing the capability means that access is allowed

D,| read read- print — | switch | swtich
owner write

D, read- read*

domains of protection

R + A process cannot modify its capability list
D,| read-

execute
D; read print
D, print

© 2014-2015 Paul Krzyzanowski 3

CS 416: Operating Systems Design April 13, 2015

Access Control Models: MAC vs. DAC Multi-level Access Control

Typical MAC implementations use a Multi-Level Secure (MLS)
access model

DAC: Discretionary Access Control

— A subject (domain) can pass information onto any other subject
— In some cases, access rights may be transferred

— Most systems use this

Bell-LaPadula model
— Identifies the ability to access and communicate data

— Objects are classified into a hierarchy of sensitivity levels
« Unclassified, Confidential, Secret, Top Secret

— Each user is assigned a clearance
— “No read up; no write down” m

— Users cannot override the polic;)
P y « Cannot read from a higher clearance level

« Cannot write to a lower clearance level
Works well for government information

Does not translate well to civilian life

MAC: Mandatory Access Control
— Policy is centrally controlled

No read up
No write down

.

.

Confidential cannot read Secret
Confidential cannot write Unclassified

The End

an32015 ©2014.2015 Paul Krzyzanowski

© 2014-2015 Paul Krzyzanowski

