
Operating Systems

19. Network Attached Storage

Paul Krzyzanowski

Rutgers University

Spring 2015

1 April 20, 2015 © 2014-2015 Paul Krzyzanowski

Accessing files

File sharing with socket-based programs

HTTP, FTP, telnet:

– Explicit access

– User-directed connection to access remote resources

We want more transparency

– Allow user to access remote resources just as local ones

NAS: Network Attached Storage

April 20, 2015 © 2014-2015 Paul Krzyzanowski 2

Remote File Service Components

Remote file access network protocol

– Request access to, look up, and access remote files and directories

Remote file server

– Provides file access interface to clients

Remote file client (driver)

– Client side interface for file and directory service

– File system driver under VFS layer will provide access transparency

• Remote files will be accessed in the same way as local files

April 20, 2015 © 2014-2015 Paul Krzyzanowski 3

Accessing Remote Files

For maximum transparency, implement the client module as a file

system type under VFS

System call interface

VFS

ext4 NTFS procfs
Remote

FS

Sockets

Network protocols

Net devices

network

Kernel-level sockets interface
sosend, soreceive in BSD & Linux

April 20, 2015 © 2014-2015 Paul Krzyzanowski 4

Stateful or Stateless design?

Stateful

Server maintains client-specific state

• Shorter requests

• Better performance in processing

requests

• Cache coherence is possible

– Server can know who’s accessing what

• File locking is possible

Stateless

Server maintains no information on
client accesses

• Each request must identify file and
offsets

• Server can crash and recover

– No state to lose

• Client can crash and recover

• No open/close needed

– They only establish state

• No server space used for state

– Don’t worry about supporting many
clients

• Problems if file is deleted on server

• File locking not possible

April 20, 2015 © 2014-2015 Paul Krzyzanowski 5

File service models

Upload/Download model

– Read file: copy file from server to client

– Write file: copy file from client to server

Advantage:

– Simple

Problems:

– Wasteful: what if client needs small

piece?

– Problematic: what if client doesn’t have

enough space?

– Consistency: what if others need to

modify the same file?

Remote access model

File service provides functional interface:

– create, delete, read bytes, write bytes, etc…

Advantages:

– Client gets only what’s needed

– Server can manage coherent view of file

system

Problem:

– Possible server and network congestion

• Servers are accessed for duration of file

access

• Same data may be requested repeatedly

April 20, 2015 © 2014-2015 Paul Krzyzanowski 6

Semantics of file sharing

Sequential Semantics

Read returns result of last write

Easily achieved if

– Only one server

– Clients do not cache data

BUT

– Performance problems if no cache

• Obsolete data

– We can write-through

• Must notify clients holding copies

• Requires extra state, generates

extra traffic

Session Semantics

Relax the rules

• Changes to an open file are

initially visible only to the process

(or machine) that modified it.

• Need to hide or lock file under

modification from other clients

• Last process to modify the file

wins.

April 20, 2015 © 2014-2015 Paul Krzyzanowski 7

Approaches to caching

• Write-through
– What if another client reads its own (out-of-date) cached copy?

– All accesses will require checking with server

– Or … server maintains state and sends invalidations

• Delayed writes (write-behind)
– Data can be buffered locally

(watch out for consistency – others won’t see updates!)

– Remote files updated periodically

– One bulk wire is more efficient than lots of little writes

– Problem: semantics become ambiguous

April 20, 2015 © 2014-2015 Paul Krzyzanowski 8

Approaches to caching

• Read-ahead (prefetch)

– Request chunks of data before it is needed.

– Minimize wait when it actually is needed.

• Write on close

– Admit that we have session semantics.

• Centralized control

– Keep track of who has what open and cached on each node.

– Stateful file system with signaling traffic.

April 20, 2015 © 2014-2015 Paul Krzyzanowski 9

Case Study: NFS
Network File System
Sun Microsystems

April 20, 2015 © 2014-2015 Paul Krzyzanowski 10

NFS Design Goals

• Any machine can be a client or server

• Must support diskless workstations

– Remote device files refer back to local drivers so we can access our devices

• Heterogeneous systems

– Not 100% for all UNIX system call options

• Access transparency: normal file system calls

• Recovery from failure:

– Stateless, UDP, client responsible for retransmission

– Stateless → no file locking possible!

• High Performance

– use caching and read-ahead

April 20, 2015 © 2014-2015 Paul Krzyzanowski 11

NFS Design Goals

Transport Protocol

Initially NFS ran over UDP using Sun Remote Procedure Calls

Why was UDP chosen?

- Slightly faster than TCP

- No connection to maintain (or lose)

- NFS is designed for Ethernet LAN environment – relatively reliable

- UDP has error detection (drops bad packets) but no retransmission

 NFS retries lost RPC requests

April 20, 2015 © 2014-2015 Paul Krzyzanowski 12

NFS Protocols

Mounting protocol

Request access to exported directory tree

Directory & File access protocol

Access files and directories

(read, write, mkdir, readdir, …)

April 20, 2015 © 2014-2015 Paul Krzyzanowski 13

Mounting Protocol

static mounting

– mount request contacts server

Server: edit /etc/exports

Client: mount fluffy:/users/paul /home/paul

April 20, 2015 © 2014-2015 Paul Krzyzanowski 14

Mounting Protocol

• Send pathname to server

• Request permission to access contents

• Server returns file handle

– File device #, inode #, instance #

client: parses pathname

 contacts server for file handle

client: create in-memory VFS inode at mount point.

 internally points to rnode for remote files

 - Client keeps state, not the server

April 20, 2015 © 2014-2015 Paul Krzyzanowski 15

Directory and file access protocol

• First, perform a lookup RPC

– returns file handle and attributes

• lookup is not like open

– No information is stored on server

• handle passed as a parameter for other file access

functions

– e.g. read(handle, offset, count)

April 20, 2015 © 2014-2015 Paul Krzyzanowski 16

Directory and file access protocol

NFS has 16 functions
– (version 2; six more added in version 3)

null

lookup

create

remove

rename

link

symlink

readlink

read

write

mkdir

rmdir

readdir

getattr

setattr

statfs

April 20, 2015 © 2014-2015 Paul Krzyzanowski 17

NFS Performance

• Usually slower than local

• Improve by caching at client
– Goal: reduce number of remote operations

– Cache results of
 read, readlink, getattr, lookup, readdir

– Cache file data at client (buffer cache)

– Cache file attribute information at client

– Cache pathname bindings for faster lookups

• Server side
– Caching is “automatic” via buffer cache

– All NFS writes are write-through to disk to avoid unexpected data
loss if server dies

April 20, 2015 © 2014-2015 Paul Krzyzanowski 18

Inconsistencies may arise

Try to resolve by validation

– Save timestamp of file

– When file opened or server contacted for new block

• Compare last modification time

• If remote is more recent, invalidate cached data

• Always invalidate data after some time

– After 3 seconds for open files (data blocks)

– After 30 seconds for directories

• If data block is modified, it is:

– Marked dirty

– Scheduled to be written

– Flushed on file close

April 20, 2015 © 2014-2015 Paul Krzyzanowski 19

Improving read performance

• Transfer data in large chunks

– 8K bytes default (that used to be a large chunk!)

• Read-ahead

– Optimize for sequential file access

– Send requests to read disk blocks before they are requested by the

application

April 20, 2015 © 2014-2015 Paul Krzyzanowski 20

Problems with NFS

• File consistency

• Assumes clocks are synchronized

• Open with append cannot be guaranteed to work

• Locking cannot work

– Separate lock manager added (but this adds stateful behavior)

• No reference counting of open files

– You can delete a file you (or others) have open!

• Global UID space assumed

April 20, 2015 © 2014-2015 Paul Krzyzanowski 21

Improving NFS: version 2

• User-level lock manager

– Monitored locks: introduces state at server

(but runs as a separate user-level process)

• If server crashes: status monitor reinstates locks on recovery

• If client crashes: all locks from client are freed

• NV RAM support
– Improves write performance

– Normally NFS must write to disk on server before responding to
client write requests

– Relax this rule through the use of non-volatile RAM

April 20, 2015 © 2014-2015 Paul Krzyzanowski 22

Improving NFS: version 2

• Adjust RPC retries dynamically

– Reduce network congestion from excess RPC retransmissions

under load

– Based on performance

• Client-side disk caching

– cacheFS

– Extend buffer cache to disk for NFS

• Cache in memory first

• Cache on disk in 64KB chunks

April 20, 2015 © 2014-2015 Paul Krzyzanowski 23

More improvements… NFS v3

• Support 64-bit file sizes

• TCP support and large-block transfers

– All traffic can be multiplexed on one connection

• Minimizes connection setup

• Negotiate for optimal transfer size

• Server checks access for entire path from client

April 20, 2015 © 2014-2015 Paul Krzyzanowski 24

More improvements… NFS v3

• New commit operation

– Check with server after a write operation to see if data is committed

– If commit fails, client must resend data

– Reduces number of write requests to server

– Speeds up write requests

• Don’t require server to write to disk immediately

• Return file attributes with each request

– Saves extra RPCs to get attributes for validation

April 20, 2015 © 2014-2015 Paul Krzyzanowski 25

AFS
Andrew File System
Carnegie Mellon University

 c. 1986(v2), 1989(v3)

April 20, 2015 © 2014-2015 Paul Krzyzanowski 26

AFS

• Design Goal

– Support information sharing on a large scale

e.g., 10,000+ clients

• History

– Developed at CMU

– Became a commercial spin-off: Transarc

– IBM acquired Transarc

– Open source under IBM Public License

– OpenAFS (openafs.org)

April 20, 2015 © 2014-2015 Paul Krzyzanowski 27

AFS Assumptions

• Most files are small

• Reads are more common than writes

• Most files are accessed by one user at a time

• Files are referenced in bursts (locality)

– Once referenced, a file is likely to be referenced again

April 20, 2015 © 2014-2015 Paul Krzyzanowski 28

AFS Design Decisions

Whole file serving

– Send the entire file on open

Whole file caching

– Client caches entire file on local disk

– Client writes the file back to server on close

• if modified

• Keeps cached copy for future accesses

April 20, 2015 © 2014-2015 Paul Krzyzanowski 29

AFS Design

• Each client has an AFS disk cache

– Part of disk devoted to AFS (e.g. 100 MB)

– Client manages cache in LRU manner

• Clients communicate with set of trusted servers

• Each server presents one identical name space to clients

– All clients access it in the same way

– Location transparent

April 20, 2015 © 2014-2015 Paul Krzyzanowski 30

AFS Server: cells

• Servers are grouped into administrative entities called cells

• Cell: collection of

– Servers

– Administrators

– Users

– Clients

• Each cell is autonomous but cells may cooperate and

present users with one uniform name space

April 20, 2015 © 2014-2015 Paul Krzyzanowski 31

AFS Server: volumes

Disk partition contains

 file and directories

Volume
– Administrative unit of organization

• E.g., user’s home directory, local source, etc.

– Each volume is a directory tree (one root)

– Assigned a name and ID number

– A server will often have 100s of volumes

Grouped into volumes

April 20, 2015 © 2014-2015 Paul Krzyzanowski 32

Namespace management

Clients get information via cell directory server (Volume

Location Server) that hosts the Volume Location Database

(VLDB)

Goal:

 everyone sees the same namespace

 /afs/cellname/path

 /afs/mit.edu/home/paul/src/try.c

April 20, 2015 © 2014-2015 Paul Krzyzanowski 33

AFS cache coherence

On open:

– Server sends entire file to client

 and provides a callback promise:

– It will notify the client when any other process modifies the file

If a client modified a file:

– Contents are written to server on close

When a server gets an update:

– it notifies all clients that have been issued the callback promise

– Clients invalidate cached files

April 20, 2015 © 2014-2015 Paul Krzyzanowski 34

AFS cache coherence

If a client was down

– On startup, contact server with timestamps of all cached files to

decide whether to invalidate

If a process has a file open

– It continues accessing it even if it has been invalidate

– Upon close, contents will be propagated to server

AFS: Session Semantics
(vs. sequential semantics)

April 20, 2015 © 2014-2015 Paul Krzyzanowski 35

AFS key concepts

• Single global namespace

– Built from a collection of volumes

– Referrals for moved volumes

– Replication of read-only volumes

• Whole-file caching

– Offers dramatically reduced load on servers

• Callback promise

– Keeps clients from having to poll the server to invalidate cache

April 20, 2015 © 2014-2015 Paul Krzyzanowski 36

AFS summary

AFS benefits

– AFS scales well

– Uniform name space

– Read-only replication

– Security model supports mutual authentication, data encryption

AFS drawbacks

– Session semantics

– Directory based permissions

– Uniform name space

April 20, 2015 © 2014-2015 Paul Krzyzanowski 37

SMB
Server Message Blocks
Microsoft

c. 1987

April 20, 2015 © 2014-2015 Paul Krzyzanowski 38

SMB Goals

• File sharing protocol for Windows

9x/NT/20xx/ME/XP/Vista/Windows 7/Windows 8/Windows 10

…

• Protocol for sharing:

Files, devices, communication abstractions (named pipes), mailboxes

• Servers: make file system and other resources available to clients

• Clients: access shared file systems, printers, etc. from servers

Design Priority:

locking and consistency over client caching

April 20, 2015 © 2014-2015 Paul Krzyzanowski 39

SMB Design

• Request-response protocol
– Send and receive message blocks

• name from old DOS system call structure

– Send request to server (machine with resource)

– Server sends response

• Connection-oriented protocol
– Persistent connection – “session”

• Each message contains:
– Fixed-size header

– Command string (based on message) or reply string

April 20, 2015 © 2014-2015 Paul Krzyzanowski 40

Message Block

• Header: [fixed size]

– Protocol ID

– Command code (0..FF)

– Error class, error code

– Tree ID – unique ID for resource in use by client (handle)

– Caller process ID

– User ID

– Multiplex ID (to route requests in a process)

• Command: [variable size]

– Param count, params, #bytes data, data

April 20, 2015 © 2014-2015 Paul Krzyzanowski 41

SMB commands

• Files

– Get disk attributes

– create/delete directories

– search for file(s)

– create/delete/rename file

– lock/unlock file area

– open/commit/close file

– get/set file attributes

• Print-related

– Open/close spool file

– write to spool

– Query print queue

• User-related

– Discover home system for user

– Send message to user

– Broadcast to all users

– Receive messages

April 20, 2015 © 2014-2015 Paul Krzyzanowski 42

Protocol Steps

• Establish connection

April 20, 2015 © 2014-2015 Paul Krzyzanowski 43

Protocol Steps

• Establish connection

• Negotiate protocol

– negprot SMB

– Responds with version number of protocol

April 20, 2015 © 2014-2015 Paul Krzyzanowski 44

Protocol Steps

• Establish connection

• Negotiate protocol

• Authenticate/set session parameters

– Send sesssetupX SMB with username, password

– Receive NACK or UID of logged-on user

– UID must be submitted in future requests

April 20, 2015 © 2014-2015 Paul Krzyzanowski 45

Protocol Steps

• Establish connection

• Negotiate protocol - negprot

• Authenticate - sesssetupX

• Make a connection to a resource (similar to mount)

– Send tcon (tree connect) SMB with name of shared resource

– Server responds with a tree ID (TID) that the client will use in future

requests for the resource

April 20, 2015 © 2014-2015 Paul Krzyzanowski 46

Protocol Steps

• Establish connection

• Negotiate protocol - negprot

• Authenticate - sesssetupX

• Make a connection to a resource – tcon

• Send open/read/write/close/… SMBs

April 20, 2015 © 2014-2015 Paul Krzyzanowski 47

The End

48 April 20, 2015 © 2014-2015 Paul Krzyzanowski

