Operating Systems
17. Sockets

Paul Krzyzanowski
Rutgers University

Spring 2015

_

4/6/2015 © 2014-2015 Paul Krzyzanowski

-
Sockets

« Dominant API for transport layer connectivity
» Created at UC Berkeley for 4.2BSD Unix (1983)

» Design goals

— Communication between processes should not depend on whether
they are on the same machine

— Communication should be efficient
— Interface should be compatible with files

— Support different protocols and naming conventions
» Sockets is not just for the Internet Protocol family

.

4/6/2015 © 2014-2015 Paul Krzyzanowski

[
@

Socket

.

Socket = Abstract object from which messages are sent
and received

» Looks like a file descriptor

« Application can select particular style of communication
— Virtual circuit, datagram, message-based, in-order delivery

» Unrelated processes should be able to locate
communication endpoints
— Sockets can have a name
— Name should be meaningful in the communications domain

4/6/2015 © 2014-2015 Paul Krzyzanowski

4)
Connection-Oriented (TCP) socket operations

SWCIapd s Create a socket
Client

__socket
Name the socket

(assign local address, port)

listen
Set the socket for listening

accept

-2

socket

Create a socket socket

Name the socket
(assign local address, port)

bind

Wait for and accept a
connection; get a socket for
the connection

read/write read/write
{ read / write byte streams |

connect

Connect to the other side

_

April 6, 2015 © 2014 Paul Krzyzanowski

-

Connectionless (UDP) socket operations

_

Client

Create a socket

Name the socket bind

(assign local address, port)

———

sendto
Send a message

Server

socket
Create a socket

Name the socket bind

(assign local address, port)

. recvfrom
Recelve a message

N

. recvfrom
Recelve a message

I I
|
e -

sendto
Send a message

__

close the socket

April 6, 2015

© 2014 Paul Krzyzanowski

_

_

Socket Internals

4/6/2015

© 2014-2015 Paul Krzyzanowski

-

_

Logical View

same
Socket layer socket buffer

same
socket buffer

same
socket buffer

Network interface (driver) layer
(driver) lay socket buffer

Device interrupt

Ethernet

4/6/2015 © 2014-2015 Paul Krzyzanowski 7

f Data Path

From app gror_n
evice

copy data from device to

copy data from user process to kernel socket buffer
ol P kernel socket buffer

drop

internal external

drop

To app To device

\

4/6/2015 © 2014-2015 Paul Krzyzanowski 8

[OS Network Stack

.

a)
System call Interface

)

File calls][Socket calls]

Generic network
interface

Socket-related system calls

Sockets implementation layer

Transport Layer] TCP/IPv4, UDP/IPv4, TCP/IPv6

T

Network Protocols

-

Network Layer] IPv4, IPv6

Abstract Device
Interface

} “netdevice”, queuing discipline

j
L

Link Layer]

Device Driver j

Ethernet, Wi-Fi, SLIP

© 2014-2015 Paul Krzyzanowski

System call interface

Two ways to communicate with the network:

Socket-specific call File call

(e.qg., socket, bind, shutdown) (e.qg., read, write, close)

» Directed to sys_socketcall (socket.c) File descriptor = socket

» Goes to the target function — Sockets reside in the process’s file table

» Direct parallel of the VFS structure
— Asocket’s f_ops field points to a set of
functions for socket operations

A socket structure acts as a queuing point for data being transmitted
& received

— A socket has send and receive queues associated with it
* High & low watermarks

4/6/2015 © 2014-2015 Paul Krzyzanowski

-
Sockets layer

 All network communication takes place via a socket

« Two socket structures — one within another
1. Generic sockets (aka BSD sockets) — struct socket
2. Protocol-specific sockets (e.g., INET socket) — struct sock

* socket structure
— Keeps all the state of a socket including the protocol and operations that can be
performed on it

— Some key members of the structure:

« struct proto_ops *ops: protocol-specific functions that implement socket operations
— Common functions to support a variety of protocols: TCP, UDP, IP, raw ethernet, other networks
— Pointers to protocol functions: bind, connect, accept, listen, sendmsg, shutdown, ...

 struct inode *inode: points to in-memory inode associated with the socket

« struct sock *sk: protocol-specific (e.g., INET) socket

— E.g., this contains TCP/IP and UDP/IP specific data for an INET
(Internet Address Domain) socket

.

4/6/2015 © 2014-2015 Paul Krzyzanowski 11

Socket Buffer: struct sk buff

« Component for managing the data movement for sockets through the networking layers
— Contains packet & state data for multiple layers of the protocol stack

« Don’t waste time copying parameters & packet data from layer to layer of the network
stack

« Data sits in a socket buffer (struct sk_buff)

« As we move through layers, data is only copied twice:
1. From user to kernel space

2. From kernel space to the device (via DMA if available) associated device
T source device
sk_buff: next prev head data tail end dev | dev_rx sk
sk_buff sk_buff S(lcket
sk_buff sk_buff
Packet data

.

4/6/2015 © 2014-2015 Paul Krzyzanowski 12

-
Socket Buffer: struct sk buff

.

« Each sent or received packet is associated with an sk_buff:

— Packet data in data->, tail-> =
— Total packet buffer in head->, end->
— Header pointers (MAC, IP, TCP header, etc.)

* ldentifies device structure (net device)

Add or remove headers without

reallocating memory

— rx_dev: points to the network device that received the packet
— dev: identifies net device on which the buffer operates
« |If a routing decision has been made, this is the outbound interface

» Each socket (connection stream) is associated with a linked list of sk_buffs

4/6/2015 © 2014-2015 Paul Krzyzanowski

13

(Keeping track of packet data

Example: Prepare an outgoing packet

head

data

tail

end

Allocate new socket buffer data
skb = alloc _skb(len, GFP_KERNEL);

No packet data: head = data = talil

.

tail room

4/6/2015 © 2014-2015 Paul Krzyzanowski

14

(

Keeping track of packet data

.

Make room for protocol headers.
skb reserve(skb, header_ len)
For IPv4, use sk->sk prot->max header

Data size is still O

head head
room
data
tail
end :
tail room

4/6/2015

© 2014-2015 Paul Krzyzanowski

15

[

. Keeping track of packet data

_

head

data

tail

end

Add user data

head
room

tail room

4/6/2015

© 2014-2015 Paul Krzyzanowski

16

[

_Keeping track of packet data

_

Add TCP header

head
head room
data
tail
end

tail room

4/6/2015

© 2014-2015 Paul Krzyzanowski

17

[

. Keeping track of packet data

_

head

data

tail

end

Add IP header

head room

tail room

4/6/2015

© 2014-2015 Paul Krzyzanowski

18

[

_Keeping track of packet data

_

head

data

tail

Add ethernet header

The outbound packet is complete!

4/6/2015

© 2014-2015 Paul Krzyzanowski

19

Network protocols

.

Define the specific protocols available (e.g., TCP, UDP)

Each networking protocol has a structure called proto
— Associated with an “address family” (e.g., AF_INET)
— Address family is specified by the programmer when creating the socket

— Defines socket operations that can be performed from the sockets layer to the
transport layer
» Close, connect, disconnect, accept, shutdown, sendmsg, recvmsg, etc.

Modular: one module may define one or more protocols

Initialized & registered at startup
— Initialization function: registers a family of protocols
— The register function adds the protocol to the active protocol list

4/6/2015 © 2014-2015 Paul Krzyzanowski

20

(

Abstract device interface

.

« Layer that interfaces with network device drivers

« Common set of functions for low-level network device drivers to
operate with the higher-level protocol stack

4/6/2015 © 2014-2015 Paul Krzyzanowski

21

(

Abstract device interface

.

« Send a packet to a device

— Send sk _buff from the protocol layer to a device
« dev_queue_ xmit function
« enqueues an sk_buff for transmission to the underlying driver
* Device is defined in sk_buff

— Device structure contains a method hard_start xmit: driver function for actually

transmitting the data in the sk_buff

* Receive a packet from a device & send to protocol stack

— Receive an sk_buff from a device
» Driver receives a packet and places it into an allocated sk_buff
« sk _buff passed to the network layer with a call to netif_rx

* Function enqueues the sk _buff to an upper-layer protocol's queue for processing
through netif rx_schedule

4/6/2015 © 2014-2015 Paul Krzyzanowski

22

[

Device drivers

* Drivers to access the network device
— Examples: ethernet, 802.11n, SLIP

 Modular, like other devices
— Described by struct net device

* [nitialization
— Driver allocates a net device structure

— Initializes it with its functions
« dev->hard start xmit:defines how to transmit a packet
— Typically the packet is moved to a hardware queue

* Register interrupt service routine

— Calls register netdeviceto make the device available to the
network stack

.

4/6/2015 © 2014-2015 Paul Krzyzanowski

23

Sending a message

 Write data to socket

» Socket calls appropriate send function (typically INET)
— Send function verifies status of socket & protocol type
— Sends data to transport layer routine (typically TCP or UDP)

» Transport layer
— Creates a socket buffer (struct sk _buff)
— Copies data from application layer; fills in header (port #, options, checksum)
— Passes buffer to the network layer (typically IP)

» Network layer
— Fills in buffer with its own headers (IP address, options, checksum)
— Look up destination route
— IP layer may fragment data into multiple packets
— Passes buffer to link layer: to destination route’s device output function

» Link layer: move packet to the device’s xmit queue

* Network driver
— Wait for scheduler to run the device driver’s transmit code
— Sends the link header
— Transmit packet via DMA

4/6/2015 © 2014-2015 Paul Krzyzanowski

24

(

Routing

.

IP Network layer
Two structures:

1. Forwarding Information Base (FIB)
Keeps track of details for every known route

2. Cache for destinations in use (hash table)
If not found here then check FIB.

4/6/2015 © 2014-2015 Paul Krzyzanowski

25

-
Recelving a message — part 1

* Interrupt from network card: packet received

* Network driver — top half

— Allocate new sk_buff
— Move data from the hardware buffer into the sk_buff (DMA)

— Call netif_rx, the generic network reception handler
« This moves the sk _buff to protocol processing (it's a work queue)
* When netif_rx returns, the service routine is finished

— Repeat until no more packets in the device buffers

« If the packet queue is full, the packet is discarded

 netif rxis called in the interrupt service routine
— Must be quick. Main goal: queue the packet.

.

4/6/2015 © 2014-2015 Paul Krzyzanowski

26

[

Receiving a packet — part 2

.

Bottom half

« Bottom half = “softiIRQ” = work queues
— Tuples containing < operation, data >

» Kernel schedules work to go through pending packet queue

 Call net rx action()
— Dequeue first sk_buff (packet)
— Go through list of protocol handlers
« Each protocol handler registers itself
« Identifies which protocol type they handle

« Go through each generic handler first
« Then go through the receive function registered for the packet’s protocol

4/6/2015 © 2014-2015 Paul Krzyzanowski

27

-
Receiving an IP packet — part 3

Network |ayer Ethernet Protocol: IP

» |P is a registered as a protocol handler for ETH _P_IP packets

— Packet header identifies next level protocol
» E.g., Ethernet header states encapsulated protocol is IPv4
» |Pv4 header states encapsulated protocol is TCP

— IP handler will either route the packet, deliver locally, or discard
« Send either to an outgoing queue (if routing) or to the transport layer

— Look at protocol field inside the IP packet
 Calls transport-level handlers (tcp _v4 rcv, udp_rcv, icmp_rcv, ...)

— IP handler includes Netfilter hooks
« Additional checks for packet filtering, port translation, and extensions

.

4/6/2015 © 2014-2015 Paul Krzyzanowski 28

(

Receiving an IP packet — part 4

.

Transport layer

» Next stage (usually): tcp_v4 rcv() or udp_rcv()
— Check for transport layer errors

— Look for a socket that should receive this packet
(match local & remote addresses and ports)

— Call tcp_v4 do_rcv: passing it the sk buff and socket (sock structure)

« Adds sk _buff to the end of that socket’s receive queue
» The socket may have specific processing options defined
— If so, apply them

» Wake up the process (ready state) if it was blocked on the socket

4/6/2015 © 2014-2015 Paul Krzyzanowski

29

-
Lots of Interrupts!

* Assume:
— Non-jumbo maximum payload size: 1500 bytes
— TCP acknowledgement (no data): 40 bytes
— Median packet size: 413 bytes

« Assume a steady flow of network traffic at:
— 1 Gbps: ~300,000 packets/second
— 100 Mbps: ~30,000 packets/second

« Even 9000-byte jumbo frames give us:
— 1 Gbps: 14,000 packets per second — 14,000 interrupts/second

One Iinterrupt per received packet

Network traffic can generate a LOT of interrupts!!

.

4/6/2015 © 2014-2015 Paul Krzyzanowski

30

-
Interrupt Mitigation: Linux NAPI

« Linux NAPI: “New API” (c. 2009)

« Avoid getting thousands of interrupts per second
— Disable network device interrupts during high traffic
— Re-enable interrupts when there are no more packets
— Polling is better at high loads; interrupts are better at low loads

* Throttle packets
— If we get more packets than we can process, leave them in the
network card’s buffer and let them get overwritten (same as
dropping a packet)
» Better to drop packets early than waste time processing them

.

4/6/2015 © 2014-2015 Paul Krzyzanowski

31

_

The End

4/6/2015

© 2014-2015 Paul Krzyzanowski

32

