CS 416: Operating Systems Design

Operating Systems

12. Devices

Paul Krzyzanowski
Rutgers University

Spring 2015

March 9, 2015

Devices

912015

Devices as files

» Character & block devices appear in the file system name space
» Use open/close/read/write operations

» Extra controls may be needed for device-specific functions
(ioctl)

* Block devices: disk drives, flash memory
— Addressable blocks (suitable for caching)

» Network devices: Ethernet & wireless networks
— Packet based /O

» Character devices: mice, keyboard, audio, scanner
— Byte streams
— Including Bus controllers
« Interface with communication busses

March s, 2015

Interacting with devices

How do you move data to/from the device?

» Programmed 1/O (PIO)
— Use memory-mapped device registers

— The processor is responsible for transferring data to/from the
device by writing/reading these registers

* DMA
— Allow the device to access system memory directly

March 9, 2015 ©20142015 Paul Kizyzanousks s

© 2014-2015 Paul Krzyzanowski

» Devices have command registers
— Transmit, receive, data ready, read, write, seek, status

* Memory mapped I/O
— Map device registers into memory
— Memory protection now protects device access

— Standard memory load/store instructions can be used to interact
with the device

March 9, 2015 ©20142015 Pau Krzyzanowski

When is the device ready?

* Need to know
— When the device is ready to accept a new command
— When data is received from a device

* Polling
— Wait for device to be ready
— To avoid busy loop, check each clock interrupt

* Interrupts from the device

— Interrupt when device has data or when the device is done
transmitting
— No checking needed — but context switch may be costly

March g, 2015 ©20142015 Pau Krzyzanouski

CS 416: Operating Systems Design

Device driver

March 9, 2015

Device System

Software in the kernel that interfaces with devices

System calls

I Common interface

Device Driver

I Custom interface

Device

Device Drivers

* Device Drivers
— Implement mechanism, not policy
— Mechanism: ways to interact with the device
— Policy: who can access and control the device

« Device drivers may be compiled into the kernel or loaded
as modules

Device Driver Initialization

+ All modules have to register themselves
— How else would the kernel know what they do?

« Device drivers register themselves as devices
— Character drivers
Initialize & register a cdev structure & implement file operations

— Block drivers
Initialize & register a gendisk structure & implement block_device operations

— Network drivers
Initialize & register a net_device structure & implementnet_device ops

Contains:
— Buffer cache & I/0O scheduler
— Generic device driver code

— Drivers for specific devices (including bus drivers)

Kernel Modules

« Chunks of code that can be loaded & unloaded into the kernel on
demand

Dynamic loader
— Links unresolved symbols to the symbol table of the running kernel

.

Linux
— insmod to add a module and rmmod commands to remove a module
— module init
+ Each module has a function that the kernel calls to initialize the module and register each
facility that the module offers

— delete module: system call calls a module exit functionin the module
— Reference counting

« Kernel keeps a use count for each device in use

« get(): increment — called from open when opening the device file

+ put(): decrement — called from close

— You can remove only when the use count is 0

Block Devices

« Structured access to the underlying hardware
» Something that can host a file system
* Supports only block-oriented I/O

+ Convert the user abstraction of the disk being an array of
bytes to the underlying structure

* Examples
— USB memory keys, disks, CDs, DVDs

© 2014-2015 Paul Krzyzanowski

CS 416: Operating Systems Design March 9, 2015

Buffer Cache Blocking & Non-blocking 1/O
+ Pool of kernel memory to hold frequently used blocks from block « Buffer cache interacts with the underlying block devices
devices

+ Options to the user at the system call level

* Blocking I/O:
— User process waits until 1/0 is complete

* Non-blocking I/O:
— Schedule output but don’t wait for it to complete
— Poll if data is ready for input (e.g., select system call)

» Minimizes the number of I/O requests that require device I/O

« Allows applications to read/write from/to the device as a stream of
bytes or arbitrary-sized blocks

User I/0 Buffer cache Device Block
requests 1/0 requests

Asynchronous 1/O Buffered vs. Unbuffered 1/0
* Request returns immediately but the 1/0 is scheduled and the Buffered 1/O:
process will be signaled when itis ready o — Kernel copies the write data to a block of memory (buffer):
- lefers from non-blocking because the I/O will be performed in its entirety + Allow the process to write bytes to the buffer and continue processing:
--- just later buffer does not need to be written to the disk ... yet

— Read operation:

« If the system crashes or is shut off before modified blocks are written, o .
« When the device is ready, the kernel places the data in the buffer

that data is lost

. TOFminimiZt_e :_atﬂa |0hsS » Why is buffering important?
— Force periodic flushes — Deals with device burstiness (leaky bucket)

+ On BSD: a user process, update, calls sync to flush data . ; X
+ On Linux: kupdated, a kernel update daemon does the work — Allows user data to be modified without affecting the data that's
read or written to the device

— Or force synchronous writes (but performance suffers!)
— Caching (for block devices)

— Alignment (for block devices)

J
File systems Network Devices
» Determine how data is organized on a block device « Packet, not stream, oriented device
* Not visible in the file system
* Software driver, n_gt a device driver » Accessible through the socket interface
— Maps low-level to high-level data structures .
» May be hardware or software devices
., — Software is agnostic
More on this later... — E.g., ethernet or loopback devices
* More on this later...
J

© 2014-2015 Paul Krzyzanowski 3

CS 416: Operating Systems Design March 9, 2015

Character Devices All objects get a common file interface

« Unstructured access to underlying hardware

All devices support generic “file” operations:
« Different types (anything that's not a block or network device):

— Real streams of characters: Terminal multiplexor, serial port
Ny - . struct file operations {
— Frame buffer: Has its own buffer management policies and custom interfaces

struct module *owner;
— Sound devices, I2C controllers, etc. loff_t (*llseek) (struct file *, loff t, int);

.) . X ssize_t (*read) (struct file *, char _ user *, size t, loff t *);
Higher-level software provides line-oriented 1/O

ssize t (+write) (struct file *, const char _user *, size t, loff t *);
— tty driver that interacts with the character driver ssize t (*aio_read) (struct kiocb *, comst struct iovec *, unsigned long, loff t);

. . . . ssize_t (*aio_write) (struct kiocb *, const struct iovec *, unsigned long, loff_t);
— Raw vs. cooked I/O: line buffering, eof, erase, kill character processing int (sreaddiz) (struct file *, void #, £illdir t);
. . . unsigned int (*poll) (struct file *, struct poll_table_struct *);
Character access to block devices (disks, USB memory keys, ...) int (*lockl) (struct inode +, struct file v, unsigned int, unsigned long);
— Character interface is the unstructured (raw) interface int (*mmap) (struct file *, struct vm area_struct *);
— 1/0 does NOT go through buffer cache int (*opem) (struct inode *, struct file *);
. . .) int (*flush) (struct file *, fl owner_t id);
— Directly between the device and buffers in user's address space

int (*release) (struct inode *, struct file *);

int (*faync) (struct file *, struct dentry *, int datasync);
int (*fasymc) (int, struct file *, int);

int (#flock) (struct file %, int, struct file lock *);

— 1/0 must be a multiple of the disk’s block size

/

Device driver entry points How do you locate devices?
+ Each device driver provides a fixed set of entry points + Explicit namespace (MS-DOS approach)

— Define whether the device has a block or character interface _C: D: LPT1: COML1:, etc.

— Block device interfaces appear in a block device table

— Character device interfaces: character device table

* Big idea!
+ Identifying a device in the kernel — Use the 'file system interface as an abstract interface for both file
) and device /O
— Major number

« Identifies device: index into the device table (block or char)
— Minor number

« Interpreted within the device driver . - R

+ Instance of a specific device — Devices are traditionally located in /dev

+ E.g., Major = SATA disk driver, Minor = specific disk

— Device: file with no contents but with metadata:
« Device file, type of device, major & minor numbers

— Created by the mknod system call (or mknod command)

+ Unique device ID = { type, major #, minor # }

y,
Device names: Windows Linux: Creating devices in /dev
« Windows NT architecture (XP, 2000, Vista, Win 7, ...) « Static devices (mknod)

— When a device driver is loaded

« Itis registered by name with the Object Manager

— Names have a hierarchical namespace maintained by Object Manager
\Device\Serial0
\Device\CDRom0

— (Linux sort of did this with devfs and devtmpfs)

* udev — kernel device manager
— user-level process

netlink socket

* Win32 API requires MS-DOS names kernel
— C:, D:, LPT1:, COML:, etc.
— These names are in the \ ?? Directory in the Object Manager’s namespace
— Visible to Win32 programs
— Symbolic links to the Windows NT device names

Device: initialized
Device: removed

mknod
m
scripts

© 2014-2015 Paul Krzyzanowski

CS 416: Operating Systems Design

Character device entry points

open: open the device
close: close the device
ioctl: do an i/o control operation

read: do an input operation

reset: reinitialize the device

select: poll the device for I/O readiness
stop: stop output on the device

write: do an output operation

Character (and raw block) devices include these entry points:

mmap: provide user programs with direct access to device memory

Kernel execution contexts

* Interrupt context

nothing to put to sleep and nothing to wake up

» User context
— Invoked by a user thread in synchronous function

« E.g., block on a file read invoked by the read system call
— (Linux) Driver can access global variable context

* Kernel context
— Kernel threads scheduled by kernel scheduler
(just like any process)
— Not related to any user threads

L&

— Unable to block because there’s no process to reschedule

— May block on a semaphore, 1/0, or copying to user memory

« Pointer to struct task_struct: tells driver who invoked the call

March 9, 2015

Block device entry points

Block devices include these entry points:

open: prepare for I/O
Called for each open system call on a block device (e.g., on
mount)

strategy: schedule 1/0 to read/write blocks
Called by the buffer cache. The kernel makes bread() and
bwrite() requests to the buffer cache. If the block isn't there then
it contacts the device.

close: called after the final client using the device terminates

psize: get partition size

Interrupt Handler

« Device drivers register themselves with the interrupt handler
— Hooks registered at initialization: call code when an event happens

« Operations of the interrupt hander
— Save all registers
— Update interrupt statistics: counts & timers
— Call interrupt service routine in driver with the appropriate unit number (ID
of device that generated the interrupt)
— Restore registers
— Return from interrupt

« The driver itself does not have to deal with saving/restoring registers

— May block on a semaphore, 1/O, or copying to user memory

Handling interrupts quickly

* Processing results of an interrupt may take time

» We want interrupt handlers to finish quickly
— Don't keep interrupts blocked

Delegation: top half — bottom half

« Split interrupt handling into two parts:

— Top half (interrupt handler)

« Part that's registered with request_irq and is called whenever an interrupt
is detected.

« Saves data in a buffer/queue, schedules bottom half, exits

— Bottom half (work queue — kernel thread)
« Scheduled by top half for later execution
« Interrupts enabled
« This is where there real work is done
« Linux 2.6+ provides tasklets & work queues for dispatching bottom halves

+ Bottom halves are handled in a kernel context

— Work queues are handled by kernel threads
— One thread per processor (events/0, events/1)

© 2014-2015 Paul Krzyzanowski

CS 416: Operating Systems Design

March 9, 2015

/0O Queues

/0O Queues

* When I/O request is received
— Request is placed on a per-device queue for processing
+ Device Status Table

— List of devices and the current status of the device
— Each device has an I/O queue attached to it

Device: keyboard

Status: idle

Device: disk 1

Status: ide Opiread Opwrite

Device: disk 2 Block: 35192 Block: 1204

Status: busy Length: 8192 | Length: 4096
Address: 0x8fe70211 Address: 0x8770122d8
1/0 queue

Device status table

* Primary means of communication between top & bottom
halves

* /O queues are shared among asynchronous functions
— Access to them must be synchronized (critical sections)

1/0 Scheduling for Block Devices (disks)

Shortest Seek Time First (SSTF)

Know: head position

Schedule the next I/O that is closest to the
current head position

Analogous to shortest job first scheduling

Distant cylinders may get starved
(or experience extra-long latency)

Elevator Algorithms

Scheduling I/Q: Linux options

« Elevator algorithm (SCAN)
— Know: head position & direction
— Schedule pending I/O in the sequence of the

ow cylinder «‘“5\

current direction High cyiinder #

@)
. \b\@'

— When the head reaches the end, switch the
direction

« LOOK
— When there are no more blocks to read/write in the
current direction, switch direction current pcsmznjy

« Circular SCAN (C-SCAN)
— Like SCAN, but:
when you reach the end of the disk, seek to the
beginning without servicing 1/0
~ Provides more uniform wait time

+ C-LOOK

— Like C-SCAN but seek to the lowest track with
scheduled I/0

Completely Fair Queuing (CFQ)
— default scheduler
— distribute I/0 equally among all per-process 1/O queues — fair per process
+ Requests sorted with each queue
+ CFQ services queues round robin (grabbing four requests per queue).
— Synchronous requests
+ Go to per-process queues
« Time slices allocated per queue
— Asynchronous requests
- Batched into queues by priority levels

Deadline

— Service requests using C-SCAN

— Each request has a deadline - If a deadline is threatened, skip to that request
— Helps with real-time performance

— Gives priority to real-time processes. Otherwise, it's fair

© 2014-2015 Paul Krzyzanowski

CS 416: Operating Systems Design March 9, 2015

Scheduling I/O: Linux options Smarter Disks
< NOOP « Disks are smarter than in the past
— Simple FIFO queue - minimal CPU overhead - E.g. WD Caviar Black drives: dual processors, 64 MB cache

— Assumes that the block device is intelligent

Logical Block Addressing (LBA)

Anticipatory — Versus Cylinder, Head, Sector

— introduce a delay before dispatching I/O to try to aggregate and/or reorder requests
to improve locality and reduce disk seek.

Automatic bad block mapping (can mess up algorithms!)
- L k f i

After issuing a request, wait (even if there’s work to be done) eave spare sectors on a track for remapping

— If a request for nearby blocks occurs, issue it. Native Command Queuing (SATA & SCSI)

— If no request, then C-SCAN — Allow drive to queue and re-prioritize disk requests

— Fair — Queue up to 256 commands with SCSI

— No support for real time Cached data

- May result "“ hlgher I/O.Iatency — Volatile memory; improves read time
— Works surprisingly well in benchmarks!!

Read-ahead caching for sequential I/O

Hybrid Hard Drives (HHD)
— NAND Flash used as a cache

Solid State Disks

* NAND Flash
— NOR Flash: random access bytes; suitable for execution; lower density
— NAND Flash: block access

. K .
No seelclatency Back to drivers

« Asynchronous random /O is efficient
— Sequential I/0 less so

« Writes are less efficient: erase-on-write needed

« Limited re-writes
— Wear leveling becomes important (~ 100K-1M program/erase cycles)

Frameworks Example of frameworks

» Most drivers are not individual character or block drivers
— Implemented under a framework for a device type
— Goal: create a set of standard interfaces

—e.g., ALSA core, TTY serial, SCSI core, framebuffer devices e
driver

 Define common parts for the same kinds of devices
— Still seen as normal devices to users

— Each framework defines a set of operations that the device must
implement
« e.g., framebuffer operations, ALSA audio operations

» Framework provides a common interface
— ioctl numbering for custom functions, semantics, etc.

© 2014-2015 Paul Krzyzanowski 7

CS 416: Operating Systems Design

March 9, 2015

Example: Framebuffer

Linux 2.6 Unified device/driver model

« Must implement functions defined in struct fb_ops
— These are framebuffer-specific operations
— xxx_open(), xxx_read(), xxx_write(), xxx_release(),
xxx_checkvar (), xxx_setpar (), xxx_setcolreg(), xxx_blank(),
xxx_pan_display(), xxx_fillrect(), xxx_copyarea(),
xxx_imageblit(), xxx_cursor(), xxx_rotate(), xxx_sync(),
xxx_get_caps(), etc.
« Also must:
— allocate an £b_info structure with framebuffer alloc()
— set the ->fbops field to the operation structure
— register the framebuffer device with register framebuffer()

» Goal: unify the relationship between:
devices, drivers, and buses

* Bus driver
— Interacts with each communication bus that supports devices (USB,
PCI, SPI, MMC, I2C, etc.)
— Responsible for:
« Registering bus type
Registering adapter/interface drivers (USB controllers, SPI controllers,
etc.): devices capable of detecting & providing access to devices
connected to the bus
« Allow registration of device drivers (USB, I2C, SPI devices)
« Match device drivers against devices

Example

Unified driver example

[USB core]

Register a bus Register a device
(usb_hcd) (usb_driver)

USB adapter driver 1] [USB device driver 1] [USB device driver 2]

(USB host controller driver)

Computer system

« USB driver is loaded & registered as a USB device driver

« Atboot time
— Bus driver registers itself to the USB bus infrastructure: /'m a USB device driver

« When the bus detects a device
— Bus driver notifies the generic USB bus infrastructure
— The bus infrastructure knows which driver is capable of handling the device

+ Generic USB bus infrastructure calls probe() in that device driver, which:
— Initializes device, maps memory, registers interrupt handlers
— Registers the device to the proper kernel framework (e.g., network infrastructure)

* Model is recursive:
— PClI controller detects a USB controller, which detects an 12C adapter, which detects
an I2C thermometer

The End

912015 ©2014-2015 Paul Kzyzanowski

© 2014-2015 Paul Krzyzanowski

