
Operating Systems

11. Memory Management – Part 3

Kernel Memory Allocation

Paul Krzyzanowski

Rutgers University

Spring 2015

1 3/9/2015 © 2014-2015 Paul Krzyzanowski

Kernel memory

• The kernel also needs memory

– User code calls malloc – kernel functions call kmalloc

• Lowest-level memory management: page allocator

– Allocate and free pages (for kernel and user processes)

• But need to manage smaller chunks of memory too

– Examples:

semaphores, TCP connection state, network sockets, open file

information, vm_area_struct

– Need to minimize wasted memory

• Page-size allocation is too wasteful

• Reuse memory and avoid fragmentation

– Sometimes we need physically-contiguous memory

2 3/9/2015 © 2014-2015 Paul Krzyzanowski

Kernel Memory Allocation

3/9/2015 © 2014-2015 Paul Krzyzanowski 3

Kernel Page Allocator

3/9/2015 © 2014-2015 Paul Krzyzanowski 4

Page allocator

• With VM, processes can use non-contiguous pages

– Memory translation makes them look contiguous

• Sometimes you need contiguous allocation

• E.g., DMA logic ignores paging

– If we rely on DMA, we need contiguous pages

5 3/9/2015 © 2014-2015 Paul Krzyzanowski

Page allocator

• Linux kernel support for contiguous buffers

• free_area: keep track of lists of free pages

– 1st element: free single pages

– 2nd element: free blocks of 2 contiguous pages

– 3rd element: free blocks of 4 contiguous pages

– …

– 10th element: free blocks of 512 contiguous pages

6 3/9/2015 © 2014-2015 Paul Krzyzanowski

Buddy System

• Try to get the best usable allocation unit

• If not available, get the next biggest one & split

• Coalesce upon free

• Example

– We want 8 contiguous pages

– Do we have a block of 8? Suppose no.

– Do we have a block of 16? Suppose no.

– Do we have a block of 32? Suppose yes.

• Split the 32 block into two blocks of 16. Back up.

– Do we have a block of 16? Yes!

• Split one of the 16 blocks into two blocks of eight. Back up.

– Do we have a block of 8? Yes!

7 3/9/2015 © 2014-2015 Paul Krzyzanowski

Buddy System: Coalescence

• When a block is freed, see if we can merge buddies

• Two blocks are buddies if:

– They are the same size, b

– They are contiguous

– The address of the first page of the lower # block is a multiple of

2b × page_size

• If two blocks are buddies, they are merged

• Repeat the process.

8 3/9/2015 © 2014-2015 Paul Krzyzanowski

Buddy System Example

9

512 blocks

512

256 blocks

128 blocks

64 blocks

We want a 64-block allocation.

None available.

Any 128-block chunks to split? No.

Any 256-block chunks to split? No.

Any 512-block chunks to split? Yes.

3/9/2015 © 2014-2015 Paul Krzyzanowski

Buddy System Example

10

512 blocks

512

256

256 blocks

128 blocks

64 blocks

256

Split a 512-block chunk into two 256-block chunks.

Try again.

We want a 64-block allocation.

None available.

Any 128-block chunks to split? No.

Any 256-block chunks to split? Yes.

3/9/2015 © 2014-2015 Paul Krzyzanowski

Buddy System Example

11

512 blocks

512

256

128

256 blocks

128 blocks

64 blocks

256

128

Split a 256-block chunk into two 128-block chunks.

Try again.

We want a 64-block allocation.

None available.

Any 128-block chunks to split? Yes.

3/9/2015 © 2014-2015 Paul Krzyzanowski

Buddy System Example

12

512 blocks

512

256

128

64

256 blocks

128 blocks

64 blocks

256

128

64

Split a 128-block chunk into two 64-block chunks.

Try again.

We want a 64-block allocation.

Got it!

3/9/2015 © 2014-2015 Paul Krzyzanowski

Buddy System Example

13

512 blocks

512

256

128

64

256 blocks

128 blocks

64 blocks

256

128

64

Requester gets the 64-block chunk.

Later, it is no longer needed and is returned.

3/9/2015 © 2014-2015 Paul Krzyzanowski

Buddy System Example

14

512 blocks

512

256

128

256 blocks

128 blocks

64 blocks

256

128

Combine (coalesce) the two 64-block chunks

into a128-block chunk

64 64

3/9/2015 © 2014-2015 Paul Krzyzanowski

Buddy System Example

15

512 blocks

512

256

128

256 blocks

128 blocks

64 blocks

256

128

Combine the two 128-block chunks into a

256-block chunk

64 64

3/9/2015 © 2014-2015 Paul Krzyzanowski

Buddy System Example

16

512 blocks

512

256

128

64

256 blocks

128 blocks

64 blocks

256

128

64

Combine the two 256-block chunks into a

512-block chunk

3/9/2015 © 2014-2015 Paul Krzyzanowski

Linux Memory Management

3/9/2015 © 2014-2015 Paul Krzyzanowski 17

Buddy System: page allocation

• Used for pages not objects

• Manages lists of physically contiguous memory pages

– Buddy system used within each zone

– E.g., allocate 8 contiguous pages of DMA-capable DRAM

• Maps regions of memory to MMU page tables

– Regions are multiples of 2x pages

• Lists of

– 1 page blocks

– 2 page blocks

– 4 page blocks

– 2n page blocks (n defined by MAX_ORDER constant)

18 3/9/2015 © 2014-2015 Paul Krzyzanowski

Zone Allocator: memory specification

• Ranges of pages may have different properties

– E.g., some architectures allow peripherals to perform DMA only for

addresses < 16 MB.

• All memory is divided into zones

– DMA: memory accessible for DMA

– NORMAL

– HIGHMEM: for system use (file system buffers, user space, etc.)

• Allocation is handled per zone. An allocation request

specifies zones in most- to least-preferred order

This is not a memory allocator but a way of qualifying

specific page needs

19 3/9/2015 © 2014-2015 Paul Krzyzanowski

Slab Allocator: object allocation

• Kernels often allocate specific objects, not arbitrary sizes

• Initializing an object sometimes takes more time than

allocating it

– If possible, keep object initialized (e.g., call mutex_init just once)

– Bring object back to its initial state at deallocation

• Key concept

Pre-allocate caches of contiguous memory to make it

efficient to allocate allocation requests for objects of a

specific size.

20 3/9/2015 © 2014-2015 Paul Krzyzanowski

Slab Allocator: components

• Terms

– Object: requested unit of allocation

– Slab: block of contiguous memory (often several pages)

• Each slab caches similarly-sized objects

• Avoids fragmentation problems

– Cache: storage for a group of slabs for a specific object

 Each unique object type gets a separate cache

• Slab states

– Empty all objects in the slab are marked as free

• The slab can be reclaimed by the OS for other purposes

– Full: all objects in the slab are marked as in-use

– Partial: the slab contains free and in-use objects

21 3/9/2015 © 2014-2015 Paul Krzyzanowski

Slab allocator structure

22

cache_chain: linked list of slab caches

kmem_cache kmem_cache kmem_cache

slabs_full slabs_partial slabs_empty

slab slab slab slab

head tail

p
a

g
e

p
a

g
e

p
a

g
e

p
a

g
e

p
a

g
e

p
a

g
e

p
a

g
e

p
a

g
e

p
a

g
e

p
a

g
e

p
a

g
e

p
a

g
e

o
b

je
c
t

o
b

je
c
t

o
b

je
c
t

o
b

je
c
t

o
b

je
c
t

o
b

je
c
t

fr
e

e

o
b

je
c
t

o
b

je
c
t

o
b

je
c
t

fr
e

e

o
b

je
c
t

o
b

je
c
t

o
b

je
c
t

fr
e

e

fr
e

e

o
b

je
c
t

o
b

je
c
t

o
b

je
c
t

o
b

je
c
t

o
b

je
c
t

o
b

je
c
t

o
b

je
c
t

o
b

je
c
t

fr
e

e

o
b

je
c
t

o
b

je
c
t

fr
e

e

• Try to find a free location for
the requested object on a partial

slab in a cache for that type of

object.

• If not found, then allocate a new

slab and assign it to a cache

3/9/2015 © 2014-2015 Paul Krzyzanowski

Slab allocator: operations

– kmem_cache_create: create a new cache

• Typically used when the kernel initializes or a kernel module is loaded

• Identifies the name of the cache and size of its objects

• Separate caches for inodes, directory entries, TCP sockets, etc.

– kmem_cache_destroy: destroy a cache

• Typically called by a module when it is unloaded

– kmem_cache_alloc: allocate an object from a named cache

• cache_alloc_refill may be called to add memory to the cache

– kmalloc / kfree: no object (cache) specified

• Iterate through available caches and find one that can satisfy the size

request

23 3/9/2015 © 2014-2015 Paul Krzyzanowski

Slab allocator: advantages

• Memory always gets allocated in the size requested

• No internal fragmentation

• Quick allocation

24 3/9/2015 © 2014-2015 Paul Krzyzanowski

SLOB: Simple List Of Blocks

• Alternative memory allocator to Slab

• Designed for small and embedded memory-constrained systems

• Heap allocator

– SLOB heap = three singly linked list of pages

1. small objects (< 256 bytes)

2. medium (< 1024 bytes)

3. large (< PAGE_SIZE)

• Lists are grown on demand with calls to __get_free_page

– Blocks < page size returned from the heap

• Return 8-byte aligned block

– All blocks, allocated & free contain a header (metadata)

• Size of this block and offset of next free/allocated block

– Bytes ≥ PAGE_SIZE

• kmalloc calls __get_free_pages directly and keeps a linked list of allocated

pages

25 3/9/2015 © 2014-2015 Paul Krzyzanowski

SLOB: Simple List Of Blocks

• Uses a first-fit allocation algorithm

• Suffers from fragmentation

26 3/9/2015 © 2014-2015 Paul Krzyzanowski

SLUB allocator

• Current default kernel memory allocator on Linux

• Similar to SLAB: same slab structures

– Reduced performance overhead

– Support arbitrary number of CPUs and arbitrary # of slabs

– Metadata that was stored per slab moved to the page structure

(info that the kernel uses to keep track of each page)

– Per-CPU queues removed to improve performance with

multiprocessor systems

27 3/9/2015 © 2014-2015 Paul Krzyzanowski

Linux kernel memory allocation

28

Page allocator

(Buddy)

SLAB SLUB SLOB Choose one

Default Small systems

3/9/2015 © 2014-2015 Paul Krzyzanowski

Original

The End

3/9/2015 29 © 2014-2015 Paul Krzyzanowski

