Operating Systems

11. Memory Management – Part 3 Kernel Memory Allocation

Paul Krzyzanowski

Rutgers University

Spring 2015

Kernel memory

- The kernel also needs memory
 - User code calls *malloc* kernel functions call *kmalloc*
- Lowest-level memory management: page allocator
 - Allocate and free pages (for kernel and user processes)
- But need to manage smaller chunks of memory too
 - Examples:

semaphores, TCP connection state, network sockets, open file information, vm_area_struct

- Need to minimize wasted memory
 - Page-size allocation is too wasteful
 - Reuse memory and avoid fragmentation
- Sometimes we need physically-contiguous memory

Kernel Memory Allocation

Kernel Page Allocator

Page allocator

- With VM, processes can use non-contiguous pages
 - Memory translation makes them look contiguous
- Sometimes you need contiguous allocation
- E.g., DMA logic ignores paging
 - If we rely on DMA, we need contiguous pages

Page allocator

- Linux kernel support for contiguous buffers
- free_area: keep track of lists of free pages
 - 1st element: free single pages
 - 2nd element: free blocks of 2 contiguous pages
 - 3rd element: free blocks of 4 contiguous pages
 - ...
 - 10th element: free blocks of 512 contiguous pages

Buddy System

- Try to get the best usable allocation unit
- If not available, get the next biggest one & split
- Coalesce upon free
- Example
 - We want 8 contiguous pages
 - Do we have a block of 8? Suppose no.
 - Do we have a block of 16? Suppose no.
 - Do we have a block of 32? Suppose yes.
 - Split the 32 block into two blocks of 16. Back up.
 - Do we have a block of 16? Yes!
 - Split one of the 16 blocks into two blocks of eight. Back up.
 - Do we have a block of 8? Yes!

Buddy System: Coalescence

- When a block is freed, see if we can merge buddies
- Two blocks are buddies if:
 - They are the same size, b
 - They are contiguous
 - The address of the first page of the lower # block is a multiple of 2b x page_size
- If two blocks are buddies, they are merged
- Repeat the process.

Linux Memory Management

Buddy System: page allocation

- Used for pages not objects
- Manages lists of physically contiguous memory pages
 - Buddy system used within each zone
 - E.g., allocate 8 contiguous pages of DMA-capable DRAM
- Maps regions of memory to MMU page tables
 - Regions are multiples of 2^x pages
- Lists of
 - 1 page blocks
 - 2 page blocks
 - 4 page blocks
 - 2ⁿ page blocks (n defined by MAX_ORDER constant)

Zone Allocator: memory specification

- Ranges of pages may have different properties
 - E.g., some architectures allow peripherals to perform DMA only for addresses < 16 MB.
- All memory is divided into zones
 - DMA: memory accessible for DMA
 - NORMAL
 - HIGHMEM: for system use (file system buffers, user space, etc.)
- Allocation is handled per zone. An allocation request specifies zones in most- to least-preferred order

This is not a memory allocator but a way of qualifying specific page needs

Slab Allocator: object allocation

- Kernels often allocate specific objects, not arbitrary sizes
- Initializing an object sometimes takes more time than allocating it
 - If possible, keep object initialized (e.g., call *mutex_init* just once)
 - Bring object back to its initial state at deallocation
- Key concept

Pre-allocate caches of contiguous memory to make it efficient to allocate allocation requests for objects of a specific size.

Slab Allocator: components

- Terms
 - Object: requested unit of allocation
 - Slab: block of contiguous memory (often several pages)
 - Each slab caches similarly-sized objects
 - Avoids fragmentation problems
 - Cache: storage for a group of slabs for a specific object Each unique object type gets a separate cache
- Slab states
 - Empty all objects in the slab are marked as free
 - The slab can be reclaimed by the OS for other purposes
 - Full: all objects in the slab are marked as in-use
 - Partial: the slab contains free and in-use objects

Slab allocator structure

Slab allocator: operations

- kmem_cache_create: create a new cache
 - Typically used when the kernel initializes or a kernel module is loaded
 - Identifies the name of the cache and size of its objects
 - Separate caches for inodes, directory entries, TCP sockets, etc.
- kmem_cache_destroy: destroy a cache
 - Typically called by a module when it is unloaded
- kmem_cache_alloc: allocate an object from a named cache
 - cache_alloc_refill may be called to add memory to the cache
- kmalloc / kfree: no object (cache) specified
 - Iterate through available caches and find one that can satisfy the size request

Slab allocator: advantages

- Memory always gets allocated in the size requested
- No internal fragmentation
- Quick allocation

SLOB: Simple List Of Blocks

- Alternative memory allocator to Slab
- Designed for small and embedded memory-constrained systems
- Heap allocator
 - SLOB heap = three singly linked list of pages
 - 1. small objects (< 256 bytes)
 - 2. medium (< 1024 bytes)
 - 3. large (< PAGE_SIZE)
 - Lists are grown on demand with calls to ___get_free_page
 - Blocks < page size returned from the heap
 - Return 8-byte aligned block
 - All blocks, allocated & free contain a header (metadata)
 - Size of this block and offset of next free/allocated block
 - Bytes ≥ PAGE_SIZE
 - kmalloc calls __get_free_pages directly and keeps a linked list of allocated pages

SLOB: Simple List Of Blocks

- Uses a first-fit allocation algorithm
- Suffers from fragmentation

SLUB allocator

- Current default kernel memory allocator on Linux
- Similar to SLAB: same slab structures
 - Reduced performance overhead
 - Support arbitrary number of CPUs and arbitrary # of slabs
 - Metadata that was stored per slab moved to the page structure (info that the kernel uses to keep track of each page)
 - Per-CPU queues removed to improve performance with multiprocessor systems

The End