
Operating Systems
09. Memory Management – Part 1

Paul Krzyzanowski

Rutgers University

Spring 2015

1 March 9, 2015 © 2014-2015 Paul Krzyzanowski

CPU Access to Memory

The CPU reads instructions and reads/write data from/to memory

CPU memory read/write

Functional interface:

value = read(address)

write(address, value)

Programs have references to memory

• Programs make use of memory addresses

– Instruction execution: addresses for branching

– Data access: addresses for reading/writing data

High-level code Object module

Symbolic addresses Offsets

or

cross-references to

external symbols

compiler

Executable

binary

Other object

modules/librarie

s

linker

In-memory

image

loader

Static linking

Monoprogramming

• Run one program at a time

• Share memory between the program and the OS

OS

Program
This was the model in old MS-

DOS (and other) systems

Absolute memory

addresses are no problem

Multiprogramming

• Keep more than one process in memory

• More processes in memory improves CPU utilization

OS

Program 0

Program 1

Program 2

Absolute memory

addresses are a problem!!

Justifying Multiprogramming: CPU Utilization

• Keep more than one process in memory

• More processes in memory improves CPU utilization

OS

Program 0

• If a process spends 20% of its time

computing, then would switching among

5 processes give us 100% CPU

utilization?

• Not quite. For n processes, if

p = % time a process is blocked on I/O

then:

 probability all are blocked = pn

• CPU is not idle for (1-pn) of the time

• 5 processes: 67% utilization

Program 1

Program 2

How do programs specify memory access?

• Absolute code

If you know where the program gets loaded (any relocation is

done at link time)

• Position independent code

All addresses are relative (e.g., gcc –fPIC option)

• Dynamically relocatable code

Relocated at load time

• Or … use logical addresses

Absolute code with with addresses translated at run time

Need special memory translation hardware

Dynamic Linking

High-level code Object module

Symbolic addresses Offsets

or

cross-references to

external symbols

compiler

Executable

binary

Other object

modules/librarie

s

linker

In-memory

image

Dynamic

libraries/module

s

loader

Load-time / run-time linking

Dynamic Linking

• A process loads libraries at load time

– Symbol references are resolved at load time

• OS loader finds the dynamic libraries and brings them

into the process’ memory address space

Dynamic Loading

• A process can load a module at runtime on request

– Similar to dynamic linking

– Program is written to load a specific library

– Resolve symbols to get pointers to data & functions

• The library can be unloaded when not needed

Shared libraries

• Dynamic linking + sharing

• Libraries that are loaded by programs when they start

– All programs that start later use the shared library

– Program loader searches for needed shared libraries

• Object code is linked with a stub

– Stub checks whether the needed library is in memory

– If not, the stub loads it

– Stub is then replaced with the address of the library

• Operating system:

– Checks if the shared library is already in another process’ memory

– Shares memory region among processes

• Need position independent code or pre-mapped code

(reserved regions of memory that processes share)

Logical addressing

Memory management unit (MMU):

Real-time, on-demand translation between

logical (virtual) and physical addresses

CPU memory read/write MMU read/write

Logical addresses Physical addresses

Relocatable addressing

Base & limit

– Physical address = logical address + base register

– But first check that: logical address < limit

CPU memory

Logical

address

Physical

address

< +

limit

register

base

register

trap

Allocating memory

Multiple Fixed Partitions

• Divide memory into predefined partitions (segments)

– Partitions don’t have to be the same size

– For example: a few big partitions and many small ones

• New process gets queued for a partition that can hold it

• Unused memory in a partition is wasted

– Internal fragmentation

– Unused partitions: external fragmentation

• Contiguous allocation:

Process takes up a contiguous region of memory

Variable partition multiprogramming

• Create partitions as needed

• New process gets queued

• OS tries to find a hole for it

OS

Program 0

Program 1

Program 2

Program 3

Program 4

Variable partition multiprogramming

• Create partitions as needed

• New process gets queued

• OS tries to find a hole for it

OS

Program 0

Program 1

Program 2

Program 3

Program 4

program 3 exits

program 1 exits

OS

Program 0

Program 2

Program 4

hole

hole

fragments

Allocation algorithms

• First fit: find the first hole that fits

• Best fit: find the hole that best fits the process

• Worst fit: find the largest available hole

– Why? Maybe the remaining space will be big enough for another

process. In practice, this algorithm does not work well.

Variable partition multiprogramming

• What if a process needs more memory?

– Always allocate some extra memory just in case

– Find a hole big enough to relocate the process

• Combining holes (fragments)

– Memory compaction

– Usually not done because of CPU time to move a lot of memory

Segmentation hardware

• Divide a process into segments and place each segment

into a partition of memory

– Code segment, data segment, stack segment, etc.

• Discontiguous memory allocation

CPU memory

Logical

address

Physical

address

< +

limit

register

segment

register

trap

Paging

• Memory management scheme

– Physical space can be non-contiguous

– No fragmentation problems

– No need for compaction

• Paging is implemented by the Memory Management Unit

(MMU) in the processor

Paging

• Translation:

– Divide physical memory into fixed-size blocks: page frames

– A logical address is divided into blocks of the same size: pages

– All memory accesses are translated: page → page frame

– A page table maps pages to frames

• Example:

– 32-bit address, 4 KB page size:

• Top 20 bits identify the page number

• Bottom 12 bits identify offset within the page/frame

Page number, p Displacement (offset), d

Page translation

Page number, p Displacement (offset), d

CPU

Logical

address

Physical

address

p d f d

f = page_table[p]

f

f

f

f

f

f

f

Physical memory
Page table

f = page_table[p]

Logical vs. physical views of memory

Page 1

Page 0

Page 2 7

6

5

4

3

2

1

0

frame

page 0

page 1

page 2

Page 3

4

2

7

-

Logical Memory Page Table

Physical Memory

0

1

2

3
page 3

not mapped

Hardware Implementation

• Where do you keep the page table?

In memory

• Each process gets its own virtual address space

– Each process has its own page table

– Change the page table by changing a page table base register

• CR3 register on Intel IA-32 and x86-64 architectures

• Memory translation is now slow!

– To read a byte of memory, we need to read the page table first

– Each memory access is now 2x slower!

Hardware Implementation: TLB

• Cache frequently-accessed pages

– Translation lookaside buffer (TLB)

– Associative memory: key (page #) and value (frame #)

• TLB is on-chip & fast … but small (64-1,024 entries)

– Locality in the program ensures lots of repeated lookups

• TLB miss = page # not cached in the TLB

– Need to do page table lookup in memory

• Hit ratio = % of lookups that come from the TLB

Address Space Identifiers: Tagged TLB

• There is only one TLB per system

• When we context switch, we switch address spaces

– New page table

– BUT … TLB entries belong to the old address space

• Either:

– Flush (invalidate) the entire TLB

– Have a Tagged TLB with an Address Space Identifier (ASID)

Protection

• An MMU can enforce memory protection

• Page table stores status & protection bits per frame

– Valid/invalid: is there a frame mapped to this page?

– Read-only

– No execute

– Kernel only access

– Dirty: the page has been modified since the flag was cleared

– Accessed: the page has been accessed since the flag was cleared

Multilevel (Hierarchical) page tables

• Most processes use only a small part of their address

space

• Keeping an entire page table is wasteful

– Example

 32-bit system with 4KB pages: 20-bit page table

 ⇒ 220 = 1,048,576 entries in the page table

Multilevel page table

Origin, b

+

index table

bn

partial page

table

p'

p0 p1 d

+

bn + p1

b0 + p0

p' d

real address

Virtual address

base = bn

Inverted page tables

• # of pages on a system may be huge

• # of page frames will be more manageable

(limited by physical memory)

• Inverted page table

– ith entry: contains info on what is in page frame i

• Table access is no longer a simple index but a search

– Use hashing and take advantage of associative memory

Next Lecture

• Sharing memory across address spaces

• Copy on write

• Demand paging

– Load needed pages on demand

– Page faults

– Page replacement: FIFO, LRU, second chance

– Thrashing

– Working set: time window

March 9, 2015 © 2014-2015 Paul Krzyzanowski 32

The End

March 9, 2015 33 © 2014-2015 Paul Krzyzanowski

