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Running more than one process 

• Batch systems 

– Run one job. When it finishes, run the next one, … 

 

• Cooperative multitasking 

– Run a process until it makes a system call  

 ⇒ transfers control to the OS 

– OS can then decide to context switch and run another process 

 

• Preemptive multitasking 

– OS programs a timer to generate an interrupt 

– Interrupt gives control back to the OS 

 ⇒ decides whether to context switch 
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Process Scheduler 

We have multiple tasks ready to run.  

Which one should get to run? 

 

Scheduling algorithm: 

– Policy: Makes  

the decision of who  

gets to run 

 

Dispatcher: 

– Mechanism to do the  

context switch 
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P6 

run queue: processes in 

the Ready state 

Running 

? 

Who gets to run? 

First Come, First Served (FCFS) 

• Run jobs to completion in the order they arrive 

• Sounds fair? 

 

 

• Turnaround time: Time to complete a job since submitting it 

• Turnaround time = Tcompletion – Tarrival 

• Assume A, B, & C arrive at around the same time 

Tturnaround(A) = 10 

Tturnaround(B) = 20 

Tturnaround(C) = 30 

Tturnaround(average) = (10+20+30) ÷ 3 = 20 
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time 0 10 20 30 40 50 60 70 80 90 100 110 

A B C 

Arrival time of C 

Start time of C 

Completion time of C 

First Come, First Served 

 

 

 

• What if A was a long-running job? 

Tturnaround(A) = 50 

Tturnaround(B) = 60 

Tturnaround(C) = 70 

Tturnaround(average) = (50+60+70) ÷ 3 = 60 
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time 0 10 20 30 40 50 60 70 80 90 100 110 

A B C 

Shortest Job First (SJF) 

 

 

 

• Let shortest jobs run first ⇒ optimizes turnaround time 

Tturnaround(B) = 10 

Tturnaround(C) = 20 

Tturnaround(A) = 70 

Tturnaround(average) = (10+20+70) ÷ 3 = 33.333 vs. 60 

 

• 1.8x better than FCFS! (in this example) 

• But if B and C arrive a bit after A, we’re still out of luck 
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time 0 10 20 30 40 50 60 70 80 90 100 110 

A B C 
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Response time 

• FCFS and SJF: non-preemptive schedulers 

– One job hold up all others! 

 

• Let’s consider response time 

– Response time = delay before a job starts to run 

– Response time = Tarrival – Trun  
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time 0 10 20 30 40 50 60 70 

A B C 

time 0 10 20 30 40 50 60 70 

A B C 

Average response time =  

= (0 + 50 + 60)÷3 = 36.67  

Average response time =  

= (0 + 10 + 20)÷3 = 10  

Round Robin 

• Let’s add preemption 

– Let a job run for some time (time slice = quantum) 

– Then context switch and give someone else a turn 

 

 

 

 

• If quantum = 2.5: 

– average response time = (0+2.5+5) ÷ 3 = 2.5 ⇒ Great! 

– average turnaround time = (70+27.5+30) ÷ 3 = 42.5 

• worse than SJF (33.3) but better than worst-case FCFS (60) 

• In general, Round Robin is not good for turnaround time 
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time 0 10 20 30 40 50 60 70 80 90 100 110 

A B C 

Time slice (quantum) length 

• Short quantum: increases overhead % of context switching 

• Long quantum: reduces interactivity 

– Tasks are allowed to run longer before a context switch is forced 

– Amortizes overhead of context switch 

• No perfect answer 

– Servers: higher emphasis on efficiency 

• Use a longer quantum to reduce overhead of context switches 

• But still need interactivity to schedule I/O and provide decent response 

– Interactive systems: higher emphasis on fast user response  

• Use a shorter quantum to have more context switches 

• But… 

– Interactive and I/O-bound tasks rarely will use up their time slice 

February 16, 2015 © 2014-2015 Paul Krzyzanowski 9 

What about I/O? 

We ignored I/O so far 

Most tasks fall into one of two categories: 

1. Large # of short CPU bursts between I/O requests 

2. Small # of long CPU bursts between I/O requests 

CPU I/O CPU I/O CPU I/O CPU I/O 

CPU Burst 

CPU idle 
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Task Behavior 

Interactive task: mostly short CPU bursts 

CPU I/O 

C
P

U
 

I/O I/O I/O 

Compute task: mostly long CPU bursts 
 

CPU I/O CPU I/O 

C
P

U
 

C
P

U
 

CPU idle CPU idle CPU idle CPU idle 

CPU idle CPU idle 
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Task Scheduling With I/O 

Goal: 

– Maximize use of CPU & improve throughput 

– Let another task run when the current one is waiting on I/O 

CPU I/O CPU I/O CPU I/O CPU I/O P0 

CP

U 
I/O CPU I/O CPU I/O CPU I/O P1 

I/O 

CPU idle CPU idle CPU idle CPU idle 
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Think of each CPU burst as an individual job that needs to be scheduled 
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Process Scheduling With a Mix of Processes 

Improve CPU utilization (increase chance of CPU being busy) 

– Some processes will use long stretches of CPU time 

• Preempt them periodically and let another process run 

– More processes than CPUs: keep them in the ready list 

– Perhaps all processes are waiting on I/O: nothing to run! 

CPU I/O CPU I/O ready CPU I/O P0 

CP

U 
I/O CPU I/O CPU I/O P1 

ready ready CPU ready P2 

ready CPU I/O I/O I/O P3 

ready 

ready 

ready 

CP

U 
I/O 

CPU 

ready 

idle 
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When does the scheduler make decisions? 

Four events may cause the scheduler to get called: 

1. Current process goes from running to blocked state 

2. Current process terminates 

3. Interrupt gives the scheduler a chance to move a process from running to 

ready: scheduler decides it’s time for someone else to run 

4. Current process goes from blocked to ready 

I/O is complete (including blocking events, such as semaphores)  

This does not necessarily mean the currently running process will change 

 

• Preemptive scheduler 

• Cooperative (non-preemptive) scheduler 

– CPU cannot be taken away unless a system call takes place or process exits 

• Run-to-completion scheduler (old batch systems) 
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Scheduling algorithm goals 
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Be fair  (to processes? To users?) 

Be efficient Keep CPU busy … and don’t spend a lot of time 

deciding! 

Maximize throughput Get as many processes to complete as quickly as 

possible 

Minimize response time Minimize time users must wait 

Be predictable Tasks should take about the same time to run & 

responsiveness should be similar when run multiple 

times 

Minimize overhead 

Maximize resource use Try to keep devices busy! 

Avoid starvation 

Enforce priorities 

Degrade gracefully 

First-Come, First-Served (FCFS) 

Ready queue 

P0 P1 P3 P7 P9 

P4 

P5 

Waiting (blocked) queues 

P6 P8 P1 

P2 

Running 

Completed 

Block on I/O 

Waiting → Ready 
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First-Come, First-Served (FCFS) 

• Non-preemptive 

• A process with a long CPU burst will hold up other processes 

– I/O bound tasks may have completed I/O and are ready to run: poor 

device utilization 

– Poor average response time 
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Round-Robin Scheduling 

Preemptive Scheduling: 

A Process can not run for longer than its assigned quantum (time slice) 

Ready queue 

P0 P1 P3 P7 P9 

P4 

P5 

Waiting (blocked) queues 

P6 P8 P1 

P2 

Running 

Completed 

Block on I/O 

Waiting → Ready 
preempted 
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Round-Robin Scheduling 

• Behavior depends on the quantum 

– Long quantum makes this similar to FCFS 

– Short quantum increases interactivity but increases the overhead % 

of context switching 

• Advantages 

– Every process gets an equal share of the CPU 

– Easy to implement 

– Easy to compute average response time: f(# processes on list) 

• Disadvantage 

– Giving every process an equal share isn’t necessarily good 

– Highly interactive processes will get scheduled the same as CPU-

bound processes 
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Shortest Remaining Time First Scheduling 

• Sort tasks by anticipated CPU burst time 

• Schedule shortest ones first 

• Optimize average response time 

E 
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23 
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11 

A 
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8 

Burst time 

Process queue 

Total run time 

Total time = 25 

Mean time = 17.6 

C 
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25 

A 

8 

15 

B 

3 

7 

D 

2 

4 

E 

2 

2 

Burst time 

Process queue 

Total run time 

Total time = 25 

Mean time = 10.6 

Mean completion time for a process falls by almost 40%! 

first last 
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Shortest Remaining Time First Scheduling 

• Biggest problem: we’re optimizing with data we don’t have! 

• All we can do is estimate 

• Exponential average – estimate of next CPU burst: 

 en+1 = αtn + (1 – α)en 

 

 

 

α is a weight factor to balance the weight of the last burst period vs. historic 

periods (0 ≤ α ≤ 1) 

 

If α = 0:  en+1 = en   (recent history has no effect) 

If α = 1:  en+1 = αtn   (use only the last burst time) 
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average of all previous CPU bursts 

time of current CPU burst 

Shortest Remaining Time First Scheduling 

• Advantage 

– Short-burst tasks run fast 

• Disadvantages 

– Long-burst (CPU intensive) tasks get a long mean waiting time 

• Starvation risk! 

– Need to rely on ability to estimate CPU burst length 
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Priority Scheduling 

Round Robin assumes all processes are equally important 

• Not true 

– Interactive tasks need high priority for good response 

– We might want non-interactive tasks to get the CPU less frequently: 

this goal led us to SRTF 

– Some tasks might be time critical 

– Users may have different status (e.g., administrator) 

• Priority scheduling algorithm: 

– Each process has a priority number assigned to it 

– Pick the process with the highest priority 

– Processes with the same priority are scheduled round-robin 

February 16, 2015 © 2014-2015 Paul Krzyzanowski 23 

Priority Scheduling – Assigning Priorities 

• Priority assignments: 

– Internal: time limits, memory requirements, I/O:CPU ratio, … 

– External: assigned by administrators 

 

• Static & dynamic priorities 

– Static priority: priority never changes 

– Dynamic priority: scheduler changes the priority during execution 

• Increase priority if it’s I/O bound for better interactive performance or to 

increase device utilization 

• Decrease a priority to let lower-priority processes run 

• Example: use priorities to drive SJF/SRTF scheduling 
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Priority Scheduling – Problems 

• Priority Inversion 

– A low-priority thread may not get scheduled, thereby preventing a 

high-priority thread that is holding a resource from making progress 

 

• Starvation 

– A low priority thread may never get scheduled if there is always a 

high-priority thread ready to run 
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Multilevel Queues 

Does each task need to have a unique priority level? 

• Priority classes: a ready queues for each priority level 
– Each priority class gets its own queue 

– Processes are permanently assigned to a specific queue 

– Examples: System processes, interactive processes, slow interactive 

processes, background non-interactive processes 

• Implementation 
– Priority scheduler with queues per priority level 

– Each queue may have a different scheduling algorithm 

(usually round-robin) 

– Quantum may be increased at each lower priority level 

• Lower-priority processes tend to be compute bound 
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Multilevel Queues 

P1 P3 P7 P9 

High priority 

preempted 

P P P P P 

preempted 

P P P P 

preempted 

P P P P 

preempted 

Real-time 

System 

Interactive 

Batch 

Low priority 
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Multilevel Feedback Queues 

• Goals 

– Allow processes to move between priority queues based on 

feedback 

• Have the scheduler learn the behavior of each task and adjust priorities 

 

• Separate processes based on CPU burst behavior 

– I/O-bound processes will end up on higher-priority queues 

• Rules 

1. A new process gets the highest priority 

2. If a process does not finish its quantum (blocks on I/O)  

 then it will stay at the same priority level (round robin) 

  otherwise it moves to the next lower priority level 
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P P P 

Multilevel Feedback Queues 

P0 P1 P3 P7 P9 

preempted 

Pick the process from the head of the highest priority queue 

High priority 

P P P 

block 
Blocked 

Ready 

Move it to the next lower priority queue 

Ready 

I/O complete 

Low priority 
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Multilevel Feedback Queues 

P0 P1 P3 P7 P9 

P P P P 

P1 P3 

preempted 

preempted 

Pick the process from the head of the highest priority queue 

High priority 

Low priority 

Ready 

Ready 

Ready 
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Example 

One long-running process 
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time 0 10 20 30 40 50 60 70 80 90 100 110 

A Low priority 

Medium priority 

High priority 

preempted 

preempted 

Example 

• Suppose a highly interactive process, B (  ), starts at T=10 

• It never uses up its quantum  

– B gets priority but spends a lot of its time in the blocked state 

– A (   ) gets to run only when B is blocked 
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time 0 10 20 30 40 50 60 70 80 90 100 110 

Low priority 

Medium priority 

High priority 

A 

I/O intensive 

CPU intensive 

Starvation & aging 

• Two problems 

– Starvation: 

If there are a lot of interactive processes, the CPU-bound 

processes will never get to run 

– Interactive process ending up at a low priority: 

If a process was CPU intensive (e.g., initializing a game) but then 

became interactive, it is forever doomed to a low priority 

 

• Solve these process aging 

– Increase the priority of a so it will be scheduled to run 

• Simplest approach: periodically, set all processes to the highest priority 

– If it remains CPU-intensive, its priority will quickly fall again 
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Gaming the system 

• What if you make an I/O operation just before the end of 

each time slice? 

– You get to stay at a high priority! 

• Solution 

– Don’t worry whether a process uses up its time slice 

– Instead, keep track of CPU time used over a larger time interval 

• If a process uses up its allotment, then lower its priority 

• Lower levels can have longer allotments 
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Varying time slices 

Two thoughts 

1. Lower priority processes get longer time slices 

– Amortize the cost of context switching 

– CPU-intensive tasks don’t get to run often. When they do, let them 

run for a longer time. 

– Interactive tasks rarely use up their quantum anyway. Keep it short 

2. Higher priority processes get longer time slices 

– Measure CPU usage per process over a longer time interval 

– Low CPU users are interactive and get high priority 

– If an interactive process needs to do some computation for a while, 

let it do so at high priority 
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Multilevel Feedback Queues 

• Advantage 

– Good for separating processes based on CPU burst needs 

– Give priority to I/O bound processes 

– No need to estimate interactivity! (Estimates were often flawed) 

• Disadvantages 

– Priorities get controlled by the system. 

A process is considered important because it uses a lot of I/O 

– Processes whose behavior changes may be poorly scheduled 

– System can be gamed by scheduling bogus I/O 

  … but we have workarounds 
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Lottery Scheduling (Fair Share) 

• Each process gets some % of “tickets” 

– E.g., 100 tickets total 

  Process A: 50 tickets (0…49) 

   Process B: 25 tickets (50…74) 

   Process C: 25 tickets (75…99) 

• The scheduler picks a random number = winning ticket 

– Process with the winning ticket gets to run 

• Benefit: Proportional share 

• Difficulty: determining ticket distribution 

– Not used for general-purpose scheduling 

– More useful for applications such as scheduling multiple virtual 

machines 
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Summary 

• Schedulers 

– Shortest remaining time first 

• Not used – Too much computing & danger of starvation 

– Multilevel Queues 

• Fixed priority – multiple processes per priority level 

– Multilevel Feedback Queues 

• Dynamic adjustment of process priority based on CPU usage 

– Lottery 

• Fair share: % allocation of CPU to each process 

• Parameters 

– Number of priority levels? (usually 32…140) 

– Quantum size – fixed or variable? 

– Keep track of CPU usage over a larger interval? 

– Process aging – how often do you boost the priority? 
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Multiprocessor Scheduling 
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Hierarchy of processors 

• Virtual CPUs in a hyperthreaded core 

– Equal access to memory, all caches, and processor 

– A CPU has to wait on a memory stall 

(e.g., to get data on a cache miss) 

– When the issuing logic can no longer schedule instructions from 

one thread and there are idle functional units in the CPU core, it will 

try to schedule a suitable instruction from the other thread 

• Cores in a multicore processor 

– Equal access to memory and an L3 cache 

• Processors in a symmetric multiprocessor (SMP) system 

– Equal access to memory but no shared cache 

• NUMA (Non-Uniform Memory architecture) 

– Access to all memory but not all memory is local 
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Symmetric multiprocessor scheduling 

• General goal: maintain processor affinity 

– Try to reschedule a process onto the same CPU 

– Cached memory may be present on the CPU’s cache 

– Keep a run queue per CPU 

• Types of affinity 

– Hard affinity: force a process to stay on the same CPU 

– Soft affinity: best effort, but the process may be rescheduled on a 

different CPU 

• Load balancing: ensure that CPUs are busy 

• It’s better to run a task on another CPU than wait 

• Pull migration 

If the run queue for a CPU is empty, get a task from another CPU’s run 

queue 

• Push migration 

Check load periodically: if not balanced, move tasks  
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Linux Multiprocessor Scheduling 

• Scheduling domain 

– Set of CPUs that share properties & scheduling policies 

• Domain contains one or more CPU groups 

– Each CPU group is treated as one unit by that domain 

– Balances load across groups – doesn’t care what’s in the group 
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CPU 0 CPU 1 

Group Group 

CPU 2 CPU 3 

Group Group 

CPU 4 CPU 5 

Group Group 

CPU 6 CPU 7 

Group Group 

Group Group Group Group 

Physical CPU Domain 
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Scheduling Domain Policies 

• Each scheduling domain has a balancing policy 

– Valid for that level of the hierarchy 

– How often should attempts be made to balance load across groups 

in the domain? 

– How far can the loads in the domain get unbalanced before 

balancing across groups is needed? 

– How long can a group in the domain sit idle? 

 

• Active load balancing is performed periodically 

– Moves up the scheduling domain hierarchy and checks all groups 

along the way 

– If any group is out of balance based on policy rules, it rebalances 
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Scheduler Examples 
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Solaris Scheduler 

• Multilevel queue scheduler: 170 priorities (0-169) 

– High priority → short quantum 

• Six scheduling classes 

– Each class has priorities and scheduling algorithms 

Highest priority (160-169): interrupt-handling threads 

1. Time sharing (0-59) 
Default class. Dynamic priorities via a 

multilevel feedback queue 

2. Interactive (0-59) 
Like TS but higher priority for in-focus 

windows in GUI 

3. Real-time (100-159) 
Fixed priority, fixed time quantum; high priority 

values 

4. System (60-99) 
Used to schedule kernel threads: run until 

they block or complete 

5. Fair share (0-59) 
Processes scheduled on % of CPU 

6. Fixed priority (0-59) 
Fixed priority 

DEFAULT 
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Solaris Scheduler 

• Default class: time sharing 

– Multilevel feedback queue 

– Small time slice for high priority queue 

– Long time slice for low priority queue 

• Interactive class: similar but gives windowing apps higher priority 

• Highest priority: threads in the real-time class 

• System class: runs kernel threads (scheduler & paging) 

– Not preempted 

• Fair share: set of processes get a “CPU share” 

• Fixed priority: like time-sharing but never adjusted 
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Windows Scheduler 

• Two classes: 

– Variable class: priorities 0-15 

– Real-time class: priorities 16-31 

• Each priority level has a queue 

– Pick the highest priority thread that is ready to run 

• Relative priority 

– Threads have relative levels within their class  

– When a quantum expires, the thread’s priority is lowered but never 

below the base 

– When a thread wakes from wait, the priority is increased 

• Higher increase if waiting for keyboard input 

– Priority is increased for foreground window processes 
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Windows Priorities 

Real-time High Above 

Normal 

Normal Below 

Normal 

Idle 

Time-

Critical 
31 15 15 15 15 15 

Highest 26 15 12 10 8 6 

Above 

Normal 
25 14 11 9 7 5 

Normal 24 13 10 8 6 4 

Below 

Normal 
23 12 9 7 5 3 

Lowest 22 11 8 6 4 2 

Idle 16 1 1 1 1 1 
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Linux Schedulers – History 

• Linux 1.2: Round Robin scheduler (fast & simple) 

• Linux 2.2: Scheduling classes (multilevel queue) 

– Classes: Real-time, non-real-time, non-preemptible  

– Basic support for symmetric multiprocessing 
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Linux 2.4: O(N) Scheduler 

• Multilevel queue with two scheduling algorithms: 

• (1) Real-time with absolute priorities (but kernel is not preemptible) 

– FIFO & Round-robin options 

• (2) Time-sharing: Credit-based algorithm 

– Each task has some # of credits associated with it 

– On each timer interrupt: 

• Each timer interrupt: running task loses 1 credit 

• If credits for a task == 0, the task is suspended 

• If all tasks have 0 credits: 

– Re-credit: Every task gets credits = credits/2 + priority 

• Choose next task to run: pick the one with the most credits 

• Not good for systems with many tasks 

– Re-crediting requires going through every task: O(N) 

• Not good for multiprocessor systems 

– One queue (in a mutex): contention & no processor affinity 
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Linux 2.6: O(1) scheduler goals 

Addressed three problems 

– Scalability: O(1) instead of O(n) to not suffer under load 

– Support processor affinity 

– Support preemption in the kernel 

• High-priority (real-time) tasks can interrupt a task running in kernel mode 
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Linux 2.6: O(1) scheduler 

• O(1) instead of O(N): no increased overhead with more tasks 

• One run queue per CPU 

• Always schedule the highest priority task 

– Multiple tasks at same priority scheduled round-robin 

• Multilevel queue 

– 140 queues (priority levels) 

• 0-99 = real-time 

• 100-139 = timesharing – dynamic priorities 

– Each priority level has its own time slice 

• Higher priority = LONGER time slice 
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Priority 0 

Priority 1 

Priority 139 

runqueue 

Linux 2.6: O(1) scheduler 

• Two sets of queues: active & expired 

– Epoch = time when all runnable tasks begin with a fresh time slice 

– When a task uses up its time slice, it is moved to the expired list 

– When there are no runnable tasks in the active list 

• Active & expired lists are swapped: end of epoch & start of a new one 

• Simulates aging 
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Priority 0 

Priority 1 

Priority 139 

active runqueue 

Priority 0 

Priority 1 

Priority 139 

expired runqueue 

swap 
when active 

is empty 

Linux 2.6: O(1) scheduler 

• Real-time tasks: static priorities 

– Choice of round-robin or FIFO 

• Non real-time tasks: dynamic priorities → reward interactive tasks 

– I/O-bound processes get priority increased by up to 5 levels 

– CPU-bound processes get priority decreased up to 5 levels 

– “Interactivity credits”: +credit for sleeping, -credit for running 

• SMP load balancing 

– Every 200ms, check if CPU loads are unbalanced 

– If so, move tasks from a loaded CPU to a less-loaded one 

– If a CPU’s runqueue is empty, move from another CPU’s runqueue 

• Downside of O(1) scheduler 

–  A lot of code with complex heuristics 
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Linux Completely Fair Scheduler 

• Latest scheduler (introduced in 2.6.23) 

• Goal: give a “fair” amount of CPU time to tasks 

• Keep track of time given to a task: “virtual runtime” 

• Basic heuristic: tasks get a fair % of the processor 

– But interactive processors are unlikely to use their share 

– When an interactive task wakes up, the scheduler sees that it used less than 

its fair share. To try to be fair, it preempts a compute-bound task 

• Priorities – affect the rate of “virtual runtime” 

– High priority task's vruntime grows slower  

than the vruntime of a low priority task 
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Linux Completely Fair Scheduler 

No run queues: virtual runtime sorted red-black tree used instead 

– Self-balancing binary tree: search, insert, & delete in O(log n) 

From: http://en.wikipedia.org/wiki/File:Red-black_tree_example.svg 

Most deserving: 

Used least amount of time 

Least deserving: 

Used most time 

13 

17 

27 22 6 

8 

1 11 15 25 

NIL NIL NIL NIL NIL 

NIL NIL NIL NIL NIL NIL 
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Left-most node always 

has the task with the 

smallest virtual runtime 

CFS: picking a process 

• Scheduling decision: 

– Pick the leftmost task (smallest virtual runtime) 

• When a task is moved from running → ready: 

– Add execution time to the per-task run time count 

– Insert the task back in the sorted tree 

• Heuristic: decay factors 

– Determine how long a task can execute 

– Higher priority tasks have lower factors of decay. 

– Avoids having run queues per priority level 
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Group Scheduling 

• Default operation: be fair to each task 

• Group scheduling: Assign one virtual runtime to a group of processes 

– Per user scheduling 

– cgroup pseudo file system interface for configuring groups 

– E.g., a user with 5 processes can get the same % of CPU as a user with 

50 processes 

• Default task group: init_task_group  

• Improve interactive performance 

– A task calls __proc_set_tty  to move to a tty task group 

•  /proc/sys/kernel/sched_granularity_ns 

– Tunable parameter to tune the scheduler between desktop (highly 

interactive) and server loads 

 

February 16, 2015 © 2014-2015 Paul Krzyzanowski 59 

Linux scheduling classes 

• Modular scheduler core: Scheduling classes 

– Scheduling class defines common set of functions that define the 

behavior of that scheduler 

• Add a task, remove a task, choose the next task 

– Each task belongs to a scheduling class 

– sched_fair.c 

• implements the CFS scheduler 

– sched_rt.c 

• implements a priority-based round-robin real-time scheduler 

 

• Scheduling domains 

– Group one or more processors in a hierarchy 

– One or more processors can share scheduling policies 
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The End 
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