
CS 416: Operating Systems Design February 16, 2015

© 2014-2015 Paul Krzyzanowski 1

Operating Systems
07. Process Scheduling

Paul Krzyzanowski

Rutgers University

Spring 2015

1 February 16, 2015 © 2014-2015 Paul Krzyzanowski

Running more than one process

• Batch systems

– Run one job. When it finishes, run the next one, …

• Cooperative multitasking

– Run a process until it makes a system call

 ⇒ transfers control to the OS

– OS can then decide to context switch and run another process

• Preemptive multitasking

– OS programs a timer to generate an interrupt

– Interrupt gives control back to the OS

 ⇒ decides whether to context switch

February 16, 2015 © 2014-2015 Paul Krzyzanowski 2

Process Scheduler

We have multiple tasks ready to run.

Which one should get to run?

Scheduling algorithm:

– Policy: Makes

the decision of who

gets to run

Dispatcher:

– Mechanism to do the

context switch

February 16, 2015 © 2014-2015 Paul Krzyzanowski 3

P0

P1

P2 P3

P4

P5

P6

run queue: processes in

the Ready state

Running

?

Who gets to run?

First Come, First Served (FCFS)

• Run jobs to completion in the order they arrive

• Sounds fair?

• Turnaround time: Time to complete a job since submitting it

• Turnaround time = Tcompletion – Tarrival

• Assume A, B, & C arrive at around the same time

Tturnaround(A) = 10

Tturnaround(B) = 20

Tturnaround(C) = 30

Tturnaround(average) = (10+20+30) ÷ 3 = 20

February 16, 2015 © 2014-2015 Paul Krzyzanowski 4

time 0 10 20 30 40 50 60 70 80 90 100 110

A B C

Arrival time of C

Start time of C

Completion time of C

First Come, First Served

• What if A was a long-running job?

Tturnaround(A) = 50

Tturnaround(B) = 60

Tturnaround(C) = 70

Tturnaround(average) = (50+60+70) ÷ 3 = 60

February 16, 2015 © 2014-2015 Paul Krzyzanowski 5

time 0 10 20 30 40 50 60 70 80 90 100 110

A B C

Shortest Job First (SJF)

• Let shortest jobs run first ⇒ optimizes turnaround time

Tturnaround(B) = 10

Tturnaround(C) = 20

Tturnaround(A) = 70

Tturnaround(average) = (10+20+70) ÷ 3 = 33.333 vs. 60

• 1.8x better than FCFS! (in this example)

• But if B and C arrive a bit after A, we’re still out of luck

February 16, 2015 © 2014-2015 Paul Krzyzanowski 6

time 0 10 20 30 40 50 60 70 80 90 100 110

A B C

CS 416: Operating Systems Design February 16, 2015

© 2014-2015 Paul Krzyzanowski 2

Response time

• FCFS and SJF: non-preemptive schedulers

– One job hold up all others!

• Let’s consider response time

– Response time = delay before a job starts to run

– Response time = Tarrival – Trun

February 16, 2015 © 2014-2015 Paul Krzyzanowski 7

time 0 10 20 30 40 50 60 70

A B C

time 0 10 20 30 40 50 60 70

A B C

Average response time =

= (0 + 50 + 60)÷3 = 36.67

Average response time =

= (0 + 10 + 20)÷3 = 10

Round Robin

• Let’s add preemption

– Let a job run for some time (time slice = quantum)

– Then context switch and give someone else a turn

• If quantum = 2.5:

– average response time = (0+2.5+5) ÷ 3 = 2.5 ⇒ Great!

– average turnaround time = (70+27.5+30) ÷ 3 = 42.5

• worse than SJF (33.3) but better than worst-case FCFS (60)

• In general, Round Robin is not good for turnaround time

February 16, 2015 © 2014-2015 Paul Krzyzanowski 8

time 0 10 20 30 40 50 60 70 80 90 100 110

A B C

Time slice (quantum) length

• Short quantum: increases overhead % of context switching

• Long quantum: reduces interactivity

– Tasks are allowed to run longer before a context switch is forced

– Amortizes overhead of context switch

• No perfect answer

– Servers: higher emphasis on efficiency

• Use a longer quantum to reduce overhead of context switches

• But still need interactivity to schedule I/O and provide decent response

– Interactive systems: higher emphasis on fast user response

• Use a shorter quantum to have more context switches

• But…

– Interactive and I/O-bound tasks rarely will use up their time slice

February 16, 2015 © 2014-2015 Paul Krzyzanowski 9

What about I/O?

We ignored I/O so far

Most tasks fall into one of two categories:

1. Large # of short CPU bursts between I/O requests

2. Small # of long CPU bursts between I/O requests

CPU I/O CPU I/O CPU I/O CPU I/O

CPU Burst

CPU idle

February 16, 2015 © 2014-2015 Paul Krzyzanowski 10

Task Behavior

Interactive task: mostly short CPU bursts

CPU I/O

C
P

U

I/O I/O I/O

Compute task: mostly long CPU bursts

CPU I/O CPU I/O

C
P

U

C
P

U

CPU idle CPU idle CPU idle CPU idle

CPU idle CPU idle

February 16, 2015 © 2014-2015 Paul Krzyzanowski 11

Task Scheduling With I/O

Goal:

– Maximize use of CPU & improve throughput

– Let another task run when the current one is waiting on I/O

CPU I/O CPU I/O CPU I/O CPU I/O P0

CP

U
I/O CPU I/O CPU I/O CPU I/O P1

I/O

CPU idle CPU idle CPU idle CPU idle

February 16, 2015 © 2014-2015 Paul Krzyzanowski 12

Think of each CPU burst as an individual job that needs to be scheduled

CS 416: Operating Systems Design February 16, 2015

© 2014-2015 Paul Krzyzanowski 3

Process Scheduling With a Mix of Processes

Improve CPU utilization (increase chance of CPU being busy)

– Some processes will use long stretches of CPU time

• Preempt them periodically and let another process run

– More processes than CPUs: keep them in the ready list

– Perhaps all processes are waiting on I/O: nothing to run!

CPU I/O CPU I/O ready CPU I/O P0

CP

U
I/O CPU I/O CPU I/O P1

ready ready CPU ready P2

ready CPU I/O I/O I/O P3

ready

ready

ready

CP

U
I/O

CPU

ready

idle

February 16, 2015 © 2014-2015 Paul Krzyzanowski 13

When does the scheduler make decisions?

Four events may cause the scheduler to get called:

1. Current process goes from running to blocked state

2. Current process terminates

3. Interrupt gives the scheduler a chance to move a process from running to

ready: scheduler decides it’s time for someone else to run

4. Current process goes from blocked to ready

I/O is complete (including blocking events, such as semaphores)

This does not necessarily mean the currently running process will change

• Preemptive scheduler

• Cooperative (non-preemptive) scheduler

– CPU cannot be taken away unless a system call takes place or process exits

• Run-to-completion scheduler (old batch systems)

February 16, 2015 © 2014-2015 Paul Krzyzanowski 14

Scheduling algorithm goals

February 16, 2015 © 2014-2015 Paul Krzyzanowski 15

Be fair (to processes? To users?)

Be efficient Keep CPU busy … and don’t spend a lot of time

deciding!

Maximize throughput Get as many processes to complete as quickly as

possible

Minimize response time Minimize time users must wait

Be predictable Tasks should take about the same time to run &

responsiveness should be similar when run multiple

times

Minimize overhead

Maximize resource use Try to keep devices busy!

Avoid starvation

Enforce priorities

Degrade gracefully

First-Come, First-Served (FCFS)

Ready queue

P0 P1 P3 P7 P9

P4

P5

Waiting (blocked) queues

P6 P8 P1

P2

Running

Completed

Block on I/O

Waiting → Ready

February 16, 2015 © 2014-2015 Paul Krzyzanowski 16

First-Come, First-Served (FCFS)

• Non-preemptive

• A process with a long CPU burst will hold up other processes

– I/O bound tasks may have completed I/O and are ready to run: poor

device utilization

– Poor average response time

February 16, 2015 © 2014-2015 Paul Krzyzanowski 17

Round-Robin Scheduling

Preemptive Scheduling:

A Process can not run for longer than its assigned quantum (time slice)

Ready queue

P0 P1 P3 P7 P9

P4

P5

Waiting (blocked) queues

P6 P8 P1

P2

Running

Completed

Block on I/O

Waiting → Ready
preempted

February 16, 2015 © 2014-2015 Paul Krzyzanowski 18

CS 416: Operating Systems Design February 16, 2015

© 2014-2015 Paul Krzyzanowski 4

Round-Robin Scheduling

• Behavior depends on the quantum

– Long quantum makes this similar to FCFS

– Short quantum increases interactivity but increases the overhead %

of context switching

• Advantages

– Every process gets an equal share of the CPU

– Easy to implement

– Easy to compute average response time: f(# processes on list)

• Disadvantage

– Giving every process an equal share isn’t necessarily good

– Highly interactive processes will get scheduled the same as CPU-

bound processes

February 16, 2015 © 2014-2015 Paul Krzyzanowski 19

Shortest Remaining Time First Scheduling

• Sort tasks by anticipated CPU burst time

• Schedule shortest ones first

• Optimize average response time

E

2

25

D

2

23

C

10

21

B

3

11

A

8

8

Burst time

Process queue

Total run time

Total time = 25

Mean time = 17.6

C

10

25

A

8

15

B

3

7

D

2

4

E

2

2

Burst time

Process queue

Total run time

Total time = 25

Mean time = 10.6

Mean completion time for a process falls by almost 40%!

first last

February 16, 2015 © 2014-2015 Paul Krzyzanowski 20

Shortest Remaining Time First Scheduling

• Biggest problem: we’re optimizing with data we don’t have!

• All we can do is estimate

• Exponential average – estimate of next CPU burst:

 en+1 = αtn + (1 – α)en

α is a weight factor to balance the weight of the last burst period vs. historic

periods (0 ≤ α ≤ 1)

If α = 0: en+1 = en (recent history has no effect)

If α = 1: en+1 = αtn (use only the last burst time)

February 16, 2015 © 2014-2015 Paul Krzyzanowski 21

average of all previous CPU bursts

time of current CPU burst

Shortest Remaining Time First Scheduling

• Advantage

– Short-burst tasks run fast

• Disadvantages

– Long-burst (CPU intensive) tasks get a long mean waiting time

• Starvation risk!

– Need to rely on ability to estimate CPU burst length

February 16, 2015 © 2014-2015 Paul Krzyzanowski 22

Priority Scheduling

Round Robin assumes all processes are equally important

• Not true

– Interactive tasks need high priority for good response

– We might want non-interactive tasks to get the CPU less frequently:

this goal led us to SRTF

– Some tasks might be time critical

– Users may have different status (e.g., administrator)

• Priority scheduling algorithm:

– Each process has a priority number assigned to it

– Pick the process with the highest priority

– Processes with the same priority are scheduled round-robin

February 16, 2015 © 2014-2015 Paul Krzyzanowski 23

Priority Scheduling – Assigning Priorities

• Priority assignments:

– Internal: time limits, memory requirements, I/O:CPU ratio, …

– External: assigned by administrators

• Static & dynamic priorities

– Static priority: priority never changes

– Dynamic priority: scheduler changes the priority during execution

• Increase priority if it’s I/O bound for better interactive performance or to

increase device utilization

• Decrease a priority to let lower-priority processes run

• Example: use priorities to drive SJF/SRTF scheduling

February 16, 2015 © 2014-2015 Paul Krzyzanowski 24

CS 416: Operating Systems Design February 16, 2015

© 2014-2015 Paul Krzyzanowski 5

Priority Scheduling – Problems

• Priority Inversion

– A low-priority thread may not get scheduled, thereby preventing a

high-priority thread that is holding a resource from making progress

• Starvation

– A low priority thread may never get scheduled if there is always a

high-priority thread ready to run

February 16, 2015 © 2014-2015 Paul Krzyzanowski 25

Multilevel Queues

Does each task need to have a unique priority level?

• Priority classes: a ready queues for each priority level
– Each priority class gets its own queue

– Processes are permanently assigned to a specific queue

– Examples: System processes, interactive processes, slow interactive

processes, background non-interactive processes

• Implementation
– Priority scheduler with queues per priority level

– Each queue may have a different scheduling algorithm

(usually round-robin)

– Quantum may be increased at each lower priority level

• Lower-priority processes tend to be compute bound

February 16, 2015 © 2014-2015 Paul Krzyzanowski 26

Multilevel Queues

P1 P3 P7 P9

High priority

preempted

P P P P P

preempted

P P P P

preempted

P P P P

preempted

Real-time

System

Interactive

Batch

Low priority

February 16, 2015 © 2014-2015 Paul Krzyzanowski 27

Multilevel Feedback Queues

• Goals

– Allow processes to move between priority queues based on

feedback

• Have the scheduler learn the behavior of each task and adjust priorities

• Separate processes based on CPU burst behavior

– I/O-bound processes will end up on higher-priority queues

• Rules

1. A new process gets the highest priority

2. If a process does not finish its quantum (blocks on I/O)

 then it will stay at the same priority level (round robin)

 otherwise it moves to the next lower priority level

February 16, 2015 © 2014-2015 Paul Krzyzanowski 28

P P P

Multilevel Feedback Queues

P0 P1 P3 P7 P9

preempted

Pick the process from the head of the highest priority queue

High priority

P P P

block
Blocked

Ready

Move it to the next lower priority queue

Ready

I/O complete

Low priority

February 16, 2015 © 2014-2015 Paul Krzyzanowski 29

Multilevel Feedback Queues

P0 P1 P3 P7 P9

P P P P

P1 P3

preempted

preempted

Pick the process from the head of the highest priority queue

High priority

Low priority

Ready

Ready

Ready

February 16, 2015 © 2014-2015 Paul Krzyzanowski 30

CS 416: Operating Systems Design February 16, 2015

© 2014-2015 Paul Krzyzanowski 6

Example

One long-running process

February 16, 2015 © 2014-2015 Paul Krzyzanowski 31

time 0 10 20 30 40 50 60 70 80 90 100 110

A Low priority

Medium priority

High priority

preempted

preempted

Example

• Suppose a highly interactive process, B (), starts at T=10

• It never uses up its quantum

– B gets priority but spends a lot of its time in the blocked state

– A () gets to run only when B is blocked

February 16, 2015 © 2014-2015 Paul Krzyzanowski 32

time 0 10 20 30 40 50 60 70 80 90 100 110

Low priority

Medium priority

High priority

A

I/O intensive

CPU intensive

Starvation & aging

• Two problems

– Starvation:

If there are a lot of interactive processes, the CPU-bound

processes will never get to run

– Interactive process ending up at a low priority:

If a process was CPU intensive (e.g., initializing a game) but then

became interactive, it is forever doomed to a low priority

• Solve these process aging

– Increase the priority of a so it will be scheduled to run

• Simplest approach: periodically, set all processes to the highest priority

– If it remains CPU-intensive, its priority will quickly fall again

February 16, 2015 © 2014-2015 Paul Krzyzanowski 33

Gaming the system

• What if you make an I/O operation just before the end of

each time slice?

– You get to stay at a high priority!

• Solution

– Don’t worry whether a process uses up its time slice

– Instead, keep track of CPU time used over a larger time interval

• If a process uses up its allotment, then lower its priority

• Lower levels can have longer allotments

February 16, 2015 © 2014-2015 Paul Krzyzanowski 34

Varying time slices

Two thoughts

1. Lower priority processes get longer time slices

– Amortize the cost of context switching

– CPU-intensive tasks don’t get to run often. When they do, let them

run for a longer time.

– Interactive tasks rarely use up their quantum anyway. Keep it short

2. Higher priority processes get longer time slices

– Measure CPU usage per process over a longer time interval

– Low CPU users are interactive and get high priority

– If an interactive process needs to do some computation for a while,

let it do so at high priority

February 16, 2015 © 2014-2015 Paul Krzyzanowski 35

Multilevel Feedback Queues

• Advantage

– Good for separating processes based on CPU burst needs

– Give priority to I/O bound processes

– No need to estimate interactivity! (Estimates were often flawed)

• Disadvantages

– Priorities get controlled by the system.

A process is considered important because it uses a lot of I/O

– Processes whose behavior changes may be poorly scheduled

– System can be gamed by scheduling bogus I/O

 … but we have workarounds

February 16, 2015 © 2014-2015 Paul Krzyzanowski 36

CS 416: Operating Systems Design February 16, 2015

© 2014-2015 Paul Krzyzanowski 7

Lottery Scheduling (Fair Share)

• Each process gets some % of “tickets”

– E.g., 100 tickets total

 Process A: 50 tickets (0…49)

 Process B: 25 tickets (50…74)

 Process C: 25 tickets (75…99)

• The scheduler picks a random number = winning ticket

– Process with the winning ticket gets to run

• Benefit: Proportional share

• Difficulty: determining ticket distribution

– Not used for general-purpose scheduling

– More useful for applications such as scheduling multiple virtual

machines

February 16, 2015 © 2014-2015 Paul Krzyzanowski 37

Summary

• Schedulers

– Shortest remaining time first

• Not used – Too much computing & danger of starvation

– Multilevel Queues

• Fixed priority – multiple processes per priority level

– Multilevel Feedback Queues

• Dynamic adjustment of process priority based on CPU usage

– Lottery

• Fair share: % allocation of CPU to each process

• Parameters

– Number of priority levels? (usually 32…140)

– Quantum size – fixed or variable?

– Keep track of CPU usage over a larger interval?

– Process aging – how often do you boost the priority?

February 16, 2015 © 2014-2015 Paul Krzyzanowski 38

Multiprocessor Scheduling

February 16, 2015 © 2014-2015 Paul Krzyzanowski 39

Hierarchy of processors

• Virtual CPUs in a hyperthreaded core

– Equal access to memory, all caches, and processor

– A CPU has to wait on a memory stall

(e.g., to get data on a cache miss)

– When the issuing logic can no longer schedule instructions from

one thread and there are idle functional units in the CPU core, it will

try to schedule a suitable instruction from the other thread

• Cores in a multicore processor

– Equal access to memory and an L3 cache

• Processors in a symmetric multiprocessor (SMP) system

– Equal access to memory but no shared cache

• NUMA (Non-Uniform Memory architecture)

– Access to all memory but not all memory is local

February 16, 2015 © 2014-2015 Paul Krzyzanowski 40

Symmetric multiprocessor scheduling

• General goal: maintain processor affinity

– Try to reschedule a process onto the same CPU

– Cached memory may be present on the CPU’s cache

– Keep a run queue per CPU

• Types of affinity

– Hard affinity: force a process to stay on the same CPU

– Soft affinity: best effort, but the process may be rescheduled on a

different CPU

• Load balancing: ensure that CPUs are busy

• It’s better to run a task on another CPU than wait

• Pull migration

If the run queue for a CPU is empty, get a task from another CPU’s run

queue

• Push migration

Check load periodically: if not balanced, move tasks

February 16, 2015 © 2014-2015 Paul Krzyzanowski 41

Linux Multiprocessor Scheduling

• Scheduling domain

– Set of CPUs that share properties & scheduling policies

• Domain contains one or more CPU groups

– Each CPU group is treated as one unit by that domain

– Balances load across groups – doesn’t care what’s in the group

February 16, 2015 © 2014-2015 Paul Krzyzanowski 42

CPU 0 CPU 1

Group Group

CPU 2 CPU 3

Group Group

CPU 4 CPU 5

Group Group

CPU 6 CPU 7

Group Group

Group Group Group Group

Physical CPU Domain

CS 416: Operating Systems Design February 16, 2015

© 2014-2015 Paul Krzyzanowski 8

Scheduling Domain Policies

• Each scheduling domain has a balancing policy

– Valid for that level of the hierarchy

– How often should attempts be made to balance load across groups

in the domain?

– How far can the loads in the domain get unbalanced before

balancing across groups is needed?

– How long can a group in the domain sit idle?

• Active load balancing is performed periodically

– Moves up the scheduling domain hierarchy and checks all groups

along the way

– If any group is out of balance based on policy rules, it rebalances

February 16, 2015 © 2014-2015 Paul Krzyzanowski 43

Scheduler Examples

February 16, 2015 © 2014-2015 Paul Krzyzanowski 44

Solaris Scheduler

• Multilevel queue scheduler: 170 priorities (0-169)

– High priority → short quantum

• Six scheduling classes

– Each class has priorities and scheduling algorithms

Highest priority (160-169): interrupt-handling threads

1. Time sharing (0-59)
Default class. Dynamic priorities via a

multilevel feedback queue

2. Interactive (0-59)
Like TS but higher priority for in-focus

windows in GUI

3. Real-time (100-159)
Fixed priority, fixed time quantum; high priority

values

4. System (60-99)
Used to schedule kernel threads: run until

they block or complete

5. Fair share (0-59)
Processes scheduled on % of CPU

6. Fixed priority (0-59)
Fixed priority

DEFAULT

February 16, 2015 © 2014-2015 Paul Krzyzanowski 45

Solaris Scheduler

• Default class: time sharing

– Multilevel feedback queue

– Small time slice for high priority queue

– Long time slice for low priority queue

• Interactive class: similar but gives windowing apps higher priority

• Highest priority: threads in the real-time class

• System class: runs kernel threads (scheduler & paging)

– Not preempted

• Fair share: set of processes get a “CPU share”

• Fixed priority: like time-sharing but never adjusted

February 16, 2015 © 2014-2015 Paul Krzyzanowski 46

M
L
F

Q

M
u

lt
ile

v
e

l

Q
u

e
u

e
s

S
im

ila
r

to

L
o

tt
e

ry

M
u

lt
ile

v
e

l

Q
u

e
u

e
s

Windows Scheduler

• Two classes:

– Variable class: priorities 0-15

– Real-time class: priorities 16-31

• Each priority level has a queue

– Pick the highest priority thread that is ready to run

• Relative priority

– Threads have relative levels within their class

– When a quantum expires, the thread’s priority is lowered but never

below the base

– When a thread wakes from wait, the priority is increased

• Higher increase if waiting for keyboard input

– Priority is increased for foreground window processes

February 16, 2015 © 2014-2015 Paul Krzyzanowski 47

Windows Priorities

Real-time High Above

Normal

Normal Below

Normal

Idle

Time-

Critical
31 15 15 15 15 15

Highest 26 15 12 10 8 6

Above

Normal
25 14 11 9 7 5

Normal 24 13 10 8 6 4

Below

Normal
23 12 9 7 5 3

Lowest 22 11 8 6 4 2

Idle 16 1 1 1 1 1

February 16, 2015 © 2014-2015 Paul Krzyzanowski 48

CS 416: Operating Systems Design February 16, 2015

© 2014-2015 Paul Krzyzanowski 9

Linux Schedulers – History

• Linux 1.2: Round Robin scheduler (fast & simple)

• Linux 2.2: Scheduling classes (multilevel queue)

– Classes: Real-time, non-real-time, non-preemptible

– Basic support for symmetric multiprocessing

February 16, 2015 © 2014-2015 Paul Krzyzanowski 49

Linux 2.4: O(N) Scheduler

• Multilevel queue with two scheduling algorithms:

• (1) Real-time with absolute priorities (but kernel is not preemptible)

– FIFO & Round-robin options

• (2) Time-sharing: Credit-based algorithm

– Each task has some # of credits associated with it

– On each timer interrupt:

• Each timer interrupt: running task loses 1 credit

• If credits for a task == 0, the task is suspended

• If all tasks have 0 credits:

– Re-credit: Every task gets credits = credits/2 + priority

• Choose next task to run: pick the one with the most credits

• Not good for systems with many tasks

– Re-crediting requires going through every task: O(N)

• Not good for multiprocessor systems

– One queue (in a mutex): contention & no processor affinity

February 16, 2015 © 2014-2015 Paul Krzyzanowski 50

Linux 2.6: O(1) scheduler goals

Addressed three problems

– Scalability: O(1) instead of O(n) to not suffer under load

– Support processor affinity

– Support preemption in the kernel

• High-priority (real-time) tasks can interrupt a task running in kernel mode

51 February 16, 2015 © 2014-2015 Paul Krzyzanowski

Linux 2.6: O(1) scheduler

• O(1) instead of O(N): no increased overhead with more tasks

• One run queue per CPU

• Always schedule the highest priority task

– Multiple tasks at same priority scheduled round-robin

• Multilevel queue

– 140 queues (priority levels)

• 0-99 = real-time

• 100-139 = timesharing – dynamic priorities

– Each priority level has its own time slice

• Higher priority = LONGER time slice

February 16, 2015 © 2014-2015 Paul Krzyzanowski 52

Priority 0

Priority 1

Priority 139

runqueue

Linux 2.6: O(1) scheduler

• Two sets of queues: active & expired

– Epoch = time when all runnable tasks begin with a fresh time slice

– When a task uses up its time slice, it is moved to the expired list

– When there are no runnable tasks in the active list

• Active & expired lists are swapped: end of epoch & start of a new one

• Simulates aging

February 16, 2015 © 2014-2015 Paul Krzyzanowski 53

Priority 0

Priority 1

Priority 139

active runqueue

Priority 0

Priority 1

Priority 139

expired runqueue

swap
when active

is empty

Linux 2.6: O(1) scheduler

• Real-time tasks: static priorities

– Choice of round-robin or FIFO

• Non real-time tasks: dynamic priorities → reward interactive tasks

– I/O-bound processes get priority increased by up to 5 levels

– CPU-bound processes get priority decreased up to 5 levels

– “Interactivity credits”: +credit for sleeping, -credit for running

• SMP load balancing

– Every 200ms, check if CPU loads are unbalanced

– If so, move tasks from a loaded CPU to a less-loaded one

– If a CPU’s runqueue is empty, move from another CPU’s runqueue

• Downside of O(1) scheduler

– A lot of code with complex heuristics

February 16, 2015 © 2014-2015 Paul Krzyzanowski 54

CS 416: Operating Systems Design February 16, 2015

© 2014-2015 Paul Krzyzanowski 10

Linux Completely Fair Scheduler

• Latest scheduler (introduced in 2.6.23)

• Goal: give a “fair” amount of CPU time to tasks

• Keep track of time given to a task: “virtual runtime”

• Basic heuristic: tasks get a fair % of the processor

– But interactive processors are unlikely to use their share

– When an interactive task wakes up, the scheduler sees that it used less than

its fair share. To try to be fair, it preempts a compute-bound task

• Priorities – affect the rate of “virtual runtime”

– High priority task's vruntime grows slower

than the vruntime of a low priority task

February 16, 2015 © 2014-2015 Paul Krzyzanowski 55

Linux Completely Fair Scheduler

No run queues: virtual runtime sorted red-black tree used instead

– Self-balancing binary tree: search, insert, & delete in O(log n)

From: http://en.wikipedia.org/wiki/File:Red-black_tree_example.svg

Most deserving:

Used least amount of time

Least deserving:

Used most time

13

17

27 22 6

8

1 11 15 25

NIL NIL NIL NIL NIL

NIL NIL NIL NIL NIL NIL

February 16, 2015 © 2014-2015 Paul Krzyzanowski 56

Left-most node always

has the task with the

smallest virtual runtime

CFS: picking a process

• Scheduling decision:

– Pick the leftmost task (smallest virtual runtime)

• When a task is moved from running → ready:

– Add execution time to the per-task run time count

– Insert the task back in the sorted tree

• Heuristic: decay factors

– Determine how long a task can execute

– Higher priority tasks have lower factors of decay.

– Avoids having run queues per priority level

February 16, 2015 © 2014-2015 Paul Krzyzanowski 58

Group Scheduling

• Default operation: be fair to each task

• Group scheduling: Assign one virtual runtime to a group of processes

– Per user scheduling

– cgroup pseudo file system interface for configuring groups

– E.g., a user with 5 processes can get the same % of CPU as a user with

50 processes

• Default task group: init_task_group

• Improve interactive performance

– A task calls __proc_set_tty to move to a tty task group

• /proc/sys/kernel/sched_granularity_ns

– Tunable parameter to tune the scheduler between desktop (highly

interactive) and server loads

February 16, 2015 © 2014-2015 Paul Krzyzanowski 59

Linux scheduling classes

• Modular scheduler core: Scheduling classes

– Scheduling class defines common set of functions that define the

behavior of that scheduler

• Add a task, remove a task, choose the next task

– Each task belongs to a scheduling class

– sched_fair.c

• implements the CFS scheduler

– sched_rt.c

• implements a priority-based round-robin real-time scheduler

• Scheduling domains

– Group one or more processors in a hierarchy

– One or more processors can share scheduling policies

February 16, 2015 © 2014-2015 Paul Krzyzanowski 60

The End

February 16, 2015 61 © 2014-2015 Paul Krzyzanowski

