
Operating Systems
06r. Assignment 5 Discussion

Paul Krzyzanowski

Rutgers University

Spring 2015

1 March 9, 2015 © 2014-2015 Paul Krzyzanowski

Assignment 5

• Write a simple shell

– Read one line: command and arguments

– Run the command with the given arguments

– Wait for the command to exit

– Print the exit code of the command

• You need to support built-in commands

– cd dirname

Change the current working directory to dirname

– exit value

Exit the shell. Optionally specify a value for the exit code

March 9, 2015 © 2014-2015 Paul Krzyzanowski 2

What you need to support

• You need to support built-in commands

– cd dirname

Change the current working directory to dirname

– exit value

Exit the shell. Optionally specify a value for the exit code

• You need to support pipes

– Pipe: ability to redirect the output of one program to the input of

another program

March 9, 2015 © 2014-2015 Paul Krzyzanowski 3

You do not need to support

• A command that spans multiple lines

• Background processes

• Environment variables

• Multiple commands per line

– E.g.: pwd; echo hello; ls /; who

• Programming constructs

– E.g., while, for, if, do

• I/O redirection

– E.g., ls -l >outfile

• Any other constructs not specifically mentioned

March 9, 2015 © 2014-2015 Paul Krzyzanowski 4

Understanding pipes

• Guiding philosophy in the design of Unix commands and

the Unix shell

– A set of small, well-defined commands

– Each command does one thing

– The output of a command should ideally be in a format that is

useful as the input to another command (avoid headers and other

junk)

– Most output is text-based and line-oriented

• Each line usually represents a complete record or nugget of data

March 9, 2015 © 2014-2015 Paul Krzyzanowski 5

Understanding pipes

• Example: how many files are in the current directory?
 ls | wc -l

– Send the output of ls (list files) to wc -l (word count: count lines)

– Counts the number of files in the current directory

• Example: how many processes is each user running?

 ps axu|sort|cut -d ' ' -f1|uniq -c|sort –n

– ps axu: list of processes – first field = user name

– sort: sort the list alphabetically

– cut –d ‘ ‘ -f 1: extract the first field of each line, delimiter = space

– uniq -c: count unique adjacent lines

– sort -n: the output numerically

March 9, 2015 © 2014-2015 Paul Krzyzanowski 6

Doing the assignment

• Develop your code incrementally

– Write a few lines of code and then test

– Do not write the entire shell and then wonder why it does not work

• Most of your code will deal with parsing!

– You must be comfortable with strings in C

• Partition the work

– You can work in a team of up to five students

– Get the parsing working on its own

• Before you add in the system calls

– Go through the tutorials (see the class Documents page)

• “Playing with processes”

• “I/O redirection and IPC”

• Make sure you understand the system calls and can run the demos

March 9, 2015 © 2014-2015 Paul Krzyzanowski 7

Step 1: get a command

• Version 0.00

– Print a prompt

– Read a line containing a command

– Print it (for debugging – you’ll remove this later)

– Repeat

• Print the prompt only if the input is a terminal (not a file)

– Detect this with isatty(0)
 int showprompt = isatty(0);

 if (showprompt) fputs(prompt, stderr);

March 9, 2015 © 2014-2015 Paul Krzyzanowski 8

stderr = standard error stream

This is typically the terminal even if you redirected output to a file

Step 2: parse command into tokens

• Parse the command that you just read

– Create a list of tokens: char **args

– Spaces and tabs separate tokens

– Tokens may be quoted to include spaces and/or tabs

– Example:
 test “this is a test” ′ hello′

will give you a list of

 { “test”, “this is a test”, “ hello”, 0 }

– Terminate each list with a 0 so you know when you reach the end

• Write your own token parser – gettok does not handle quotes

– You should NOT have to call malloc and/or copy strings

• Just parse in place, set pointers to what you need, and set bytes to 0 to mark an

end of a string

March 9, 2015 © 2014-2015 Paul Krzyzanowski 9

Step 3: parse a list of commnands

• Create a list of token lists

• For example:
 ps axu|sort|cut -d ' ' -f1|uniq -c|sort –n

• Produces 5 lists:

 command 1: { “ps”, “axu”, 0 }

 command 2: { “sort”, 0 }

 command 3: { “cut”, “-d”, “ “, “-f1”, 0}

 command 4: { “uniq”, “-c”, 0}

 command 5: { “sort”, “-n”, 0}

• Print these out:

Make sure you’re capturing all the data.

March 9, 2015 © 2014-2015 Paul Krzyzanowski 10

Use an array of pointers

to tokens for each

command:

e.g., char **args[MAXA];

Use a linked list for the

entire pipeline of

commands (this is the

only place in your code

where you may choose

to use malloc)

Step 4: run simple commands

• Now we have a list of commands

• Each command is an array of pointers to strings

• Handle the simple case first

– No pipe (just one command in the list)

– Follow the demo code:

• fork()

• child:

– call execvp(cmd->av[0], cmd)

where cmd is a pointer to the struct that contains your argument list

The first argument is the name of the command

• parent:

– wait for the command to exit

– print the process ID of that command and the error code

March 9, 2015 © 2014-2015 Paul Krzyzanowski 11

name of command

arguments (including name)

Step 5: the pipe system call

• The pipe system call creates two open files:

 int pipe(int fd[2])

• Anything written to fd[1] can be read from fd[0]

• These are not files in the file system – just a communication

mechanism

March 9, 2015 © 2014-2015 Paul Krzyzanowski 12

Step 5: get pipes working

• A command expects three open files:

– File descriptor 0 = standard input (normally your keyboard)

– File descriptor 1 = standard output (normally your terminal window)

– File descriptor 2 = standard error (normally your terminal window)

• Read the tutorial on I/O redirection using dup2 and pipe

March 9, 2015 © 2014-2015 Paul Krzyzanowski 13

ls wc -l

Parent creates a pipe: p[2]

Each child:

 Prior to calling execvp, overwrite the standard output and standard input

fd 1 = pipe[1]

pipe[1] pipe[0]

fd 0 = pipe[0]

standard output standard input

Step 5: get pipes working

• Before calling exec to run a command, the child does:

March 9, 2015 © 2014-2015 Paul Krzyzanowski 14

if the command is getting its input from a pipe (another command)

 Use dup2 to set the standard input (0) to fd[0] of the pipe

if there is another command in the pipeline

 Use dup2 to set the standard output (1) to fd[1] of the next pipe

 (the next command will read from the corresponding fd[0])

close any ends of the pipe that you don’t need

execvp(cmd->args[0], cmd->args);

Built-in commands

• Built-in commands

– Processed by the shell directly

– exit N: exit the shell with a exit code of N

– cd D: change the current working directory to D

• For this assignment, you do NOT need to support built-in commands

inside a pipeline

• Prior to creating a child via fork

– Check the command (argument 0) to see if it is a built-in command

– Make this process table-driven

• Declare a table of structs so you can iterate through the table to find the

command and corresponding function

• This keeps your code really short and clean

• Makes it easier to add new built-in commands

March 9, 2015 © 2014-2015 Paul Krzyzanowski 15

Built-in commands

• Example:
 struct builtin {

 char *name; /* command name */

 int (*f)(); /* pointer to function */

 }

• Have each command look like main(int argc, char**argv)

– This makes it easy to turn programs into built-in commands

– We already parsed out an argument list  count the arguments to get argc

• If you the command matches a built-in command, call

 builtins[i].f(cmd->argc, cmd->args);

March 9, 2015 © 2014-2015 Paul Krzyzanowski 16

The function pointer in builtins[i]

The End

March 9, 2015 17 © 2014-2015 Paul Krzyzanowski

