Operating Systems

06. Synchronization

Paul Krzyzanowski
Rutgers University

Spring 2015

_

February 14, 2015 © 2014-2015 Paul Krzyzanowski

Concurrency

Concurrent threads/processes (informal)

— Two processes are concurrent if they run at the same time or if their
execution is interleaved in any order

Asynchronous
— The processes require occasional synchronization

Independent
— They do not have any reliance on each other

Synchronous

— Frequent synchronization with each other — order of execution is
guaranteed

Parallel
— Processes run at the same time on separate Processors

February 14, 2015 © 2014-2015 Paul Krzyzanowski 2

-
Race Conditions

A race condition Is a bug:
— The outcome of concurrent threads are unexpectedly dependent on
a specific sequence of events.
Example
— Your current bank balance is $1,000.
— Withdraw $500 from an ATM machine while a $5,000 direct deposit

IS coming in
Execute concurrently
A

' _ \
Withdrawal Deposit

 Read account balance Read account balance

» Subtract 500 « Add 5000

* Write account balance » Write account balance

Possible outcomes:

Total balance = $5500 $500 $6000

.

February 14, 2015 © 2014-2015 Paul Krzyzanowski 3

-
Synchronization

Synchronization deals with developing techniques to avoid
race conditions

Something as simple as
X=Xx+1;
Compiles to this and may cause a race condition:
movl _x (%rip), Yoeax
addl $1, Yheax
-

movl %eax, X (%orip)

preemption for a race

} Potential points of
condition

_

February 14, 2015 © 2014-2015 Paul Krzyzanowski

Mutual Exclusion

Critical section;
Region in a program where race conditions can arise

Mutual exclusion:
Allow only one thread to access a critical section at a time

Deadlock:
A thread is perpetually blocked (circular dependency on resources)

Starvation:
A thread is perpetually denied resources

Livelock:
Threads run but with no progress in execution

February 14, 2015 © 2014-2015 Paul Krzyzanowski

(

« Walit if you cannot get a lock

A

Avoid race conditions with locks

 Grab and release locks around critical sections

Execute concurrently

(
Withdrawal

[Enter Critical

T] » Acquire(transfer_lock)

|
Critical !
Section i Subtract 500 i
 * Write account balance 1
Exit Critical \ . T TT°~7
[Xs'ec{i'o'ﬁa] * Release(transfer_lock)

.

Deposit

« Acquire(transfer_lock) [

Enter Critical
Section

]

1+ Add 5000
e Write account balance

Critical
Section

- Release(transfer_lock) [

Exit Critical
Section

]

February 14, 2015

© 2014-2015 Paul Krzyzanowski

(

The Critical Section Problem

_

Design a protocol to allow threads to enter a critical section

February 14, 2015 © 2014-2015 Paul Krzyzanowski

Conditions for a solution

« Mutual exclusion: No threads may be inside the same critical sections
simultaneously

* Progress: If no thread is executing in its critical section but one or more threads
want to enter, the selection of a thread cannot be delayed indefinitely.

— If one thread wants to enter, it should be permitted to enter.
— If multiple threads want to enter, exactly one should be selected.

« Bounded waiting: No thread should wait forever to enter a critical section
* No thread running outside its critical section may block others

« A good solution will make no assumptions on:
— No assumptions on # processors
— No assumption on # threads/processes

— Relative speed of each thread

February 14, 2015 © 2014-2015 Paul Krzyzanowski 8

-
Critical sections & the kernel

« Multiprocessors

— Multiple processes on different processors may access the kernel
simultaneously

— Interrupts may occur on multiple processors simultaneously

* Preemptive kernels

— Preemptive kernel: process can be preempted while running in
kernel mode (the scheduler may preempt a process even if it is running in
the kernel)

— Nonpreemptive kernel: processes running in kernel mode cannot
be preempted (but interrupts can still occur!)

 Single processor, nonpreemptive kernel
— Free from race conditions!

.

February 14, 2015 © 2014-2015 Paul Krzyzanowski 9

p

Solution #1: Disable Interrupts

.

Disable all system interrupts before entering a critical
section and re-enable them when leaving

Bad!

— Gives the thread too much control over the system
— Stops time updates and scheduling
— What if the logic in the critical section goes wrong?

— What if the critical section has a dependency on some other
Interrupt, thread, or system call?

— What about multiple processors? Disabling interrupts affects just
one processor

Advantage
— Simple, guaranteed to work
— Was often used in the uniprocessor kernels

February 14, 2015 © 2014-2015 Paul Krzyzanowski

10

-

Solution #2: Software Test & Set Locks

Keep a shared lock variable:

while (locked) ;

locked = 1;
/* do critical section */
locked = 0;

Disadvantage:
— Buggy! There's a race condition in setting the lock

Advantage:

— Simple to understand. It's been used for things such as locking
mailbox files

.

February 14, 2015 © 2014-2015 Paul Krzyzanowski

-

Solution #3: Lockstep Synchronization

\.

Take turns
Thread O
while (turn !=

critical section();

turn =

Disadvantage:

1;

Thread 1

0); while (turn !'= 1);
critical section();

turn = 0;

— Forces strict alternation; if thread 2 is really slow, thread 1 is slowed
down with it. Turns asynchronous threads into synchronous threads

February 14, 2015

© 2014-2015 Paul Krzyzanowski 12

-
Software solutions for mutual exclusion

» Peterson’s solution (page 207 of text) , Dekker’s, & others

» Disadvantages:

— Difficult to implement correctly
Have to rely on volatile data types to ensure that compilers
don’t make the wrong optimizations

— Difficult to implement for an arbitrary number of threads

.

February 14, 2015 © 2014-2015 Paul Krzyzanowski 13

_

Let’s turn to hardware for help

February 14, 2015 © 2014-2015 Paul Krzyzanowski

14

[

Help from the processor

Atomic (indivisible) CPU instructions that help us get locks
» Test-and-set
« Compare-and-swap

 Fetch-and-Increment

These instructions execute in their entirety: they cannot be
Interrupted or preempted partway through their execution

February 14, 2015 © 2014-2015 Paul Krzyzanowski

15

Test & Set

Set the lock but get told if it already was set (in which case you don’t
have it)

int test and set (int *x) {

O last value = *x;
(ED— *X — 1;
<

return last value;

How you use it to lock a critical section (i.e., enforce mutual exclusion):

while (test and set(&lock) == 1) ; /* spin */
/* do critical section */
lock = 0; /* release the lock */

February 14, 2015 © 2014-2015 Paul Krzyzanowski 16

.

/ Compare & swap (CAS)

Compare the value of a memory location with an old value. If they match

then replace with a new value

ATOMIC

int compare and swap (int *x, 1Int old, int new) {

}

int save = *x;
1f (save == o0ld)
*X = new;

return save; /* always return location contents */

How you use it to grab a critical section:

Avoid the race condition — set locked to 1 only if locked was still set to O.

while (compare and swap(&locked, 0, 1) != 0) ;

/* spin until locked == 0 */

/* if we got here, locked got set to 1 and we have it */
/* do critical section */
locked = 0; /* release the lock */

February 14, 2015

© 2014-2015 Paul Krzyzanowski 17

(

Fetch & Increment

_

Increment a memory location; return previous value

— int fetch and increment (int *x) {
O last value = *x;
> *x = *x + 1;
O‘
z return last value;
}

February 14, 2015 © 2014-2015 Paul Krzyzanowski

18

/

Fetch & Increment

\

Check that it's your turn for the critical section

Ticket lock

ticket = 0; turn = 0;

myturn = fetch and increment (&ticket);

while (turn != myturn)

.
14

/* do critical section */

fetch_and_increment(&turn);

turn

ticket

February 14, 2015 © 2014-2015 Paul Krzyzanowski

19

(

The problem with spin locks

.

« All these solutions require busy waiting
— Tight loop that spins waiting for a turn: busy waiting or spin lock

* Nothing useful gets done!
— Wastes CPU cycles

February 14, 2015 © 2014-2015 Paul Krzyzanowski

20

p

Priority Inversion

.

« Spin locks may lead to priority inversion

* The process with the lock may not be allowed to run!
— Suppose a lower priority process obtained a lock

— Higher priority process is always ready to run but loops on trying to
get the lock

— Scheduler always schedules the higher-priority process

— Priority inversion

* |If the low priority process would get to run & release its lock, it
would then accelerate the time for the high priority process to get
a chance to get the lock and do useful work

* Try explaining that to a scheduler!

February 14, 2015 © 2014-2015 Paul Krzyzanowski 21

/

Priority Inheritance

.

« Technigue to avoid priority inversion

* Increase the priority of any process in a critical section to
the maximum of any process waiting on any resource for
which the process has a lock

 When the lock is released, the priority goes to its normal
level

February 14, 2015 © 2014-2015 Paul Krzyzanowski

22

_

Spin locks aren't great

Can we block until we can get the critical
section?

February 14, 2015 © 2014-2015 Paul Krzyzanowski

23

-
How about this?

public class Lock

{
private int val = UNLOCKED;

private ThreadQueue waitQueue = new ThreadQueue() ;
public void acquire () {
Thread me = Thread.currentThread() ;
while (TestAndSet (val) == LOCKED) {
waltQueue.waitForAccess (me); // Put self in queue
Thread.sleep () ; // Put self to sleep

}
// Got the lock

}

public void release () {
Thread next = waitQueue.nextThread() ;
val = UNLOCKED;
if (next !'= null)
next.ready(); // Wake up a waiting thread

\ }

February 14, 2015 © 2014-2015 Paul Krzyzanowski 24

[
@

Sorry...

.

« Accessing the wait queue is a critical section
— Need to add mutual exclusion

* Need extra lock check in acquire
— Thread may find the lock busy

— Another thread may release the lock but before the first thread
enqueues itself

* This can get ugly!

February 14, 2015 © 2014-2015 Paul Krzyzanowski

25

-
Semaphores

« Two atomic operations:

1f (s > O

down (sem s) {
)
S = s -

1;
else
sleep on event s

}

up (sem s) {

if (someone 1s waiting on s)
wake up one of the threads
else
s = s + 1;

.

« Count # of wake-ups saved for future use

-

//initialize
mutex = 1;

down (&mutex)

// critical section

up (&mutex)

/

Binary semaphore

February 14, 2015 © 2014-2015 Paul Krzyzanowski

26

-

Semaphores

.

Count the number of threads that may enter a critical
section at any given time.

— Each down decreases the number of future accesses
— When no more are allowed, processes have to wait

— Each up lets a waiting process get in

February 14, 2015 © 2014-2015 Paul Krzyzanowski

27

-
Producer-Consumer example

* Producer
— Generates items that go into a buffer

— Maximum buffer capacity = N
— If the producer fills the buffer, it must wait (sleep)

« Consumer
— Consumes things from the buffer
— If there’s nothing in the buffer, it must wait (sleep)

* This is known as the Bounded-Buffer Problem

.

February 14, 2015 © 2014-2015 Paul Krzyzanowski

28

(

Producer-Consumer example

_

sem mutex=1, empty=N, full=0;
producer () {
for (;;) |

produce item(&item); //
down (&empty) ; //
down (&mutex) ; //
enter item(item); //
up (&mutex) ; //
up (&full) ; //
}
}
consumer () {

for (;7) |

down (&full) ; //
down (&mutex) ; //
remove item(item); /7
up (&mutex) ; //
up (&empty) ; //
consume item(item); /7

}

produce something
decrement empty count
start critical section
put item in buffer

end critical section
+1 full slot

one less item

start critical section

get the i1tem from the buffer
end critical section

one more empty slot

consume 1t

February 14, 2015 © 2014-2015 Paul Krzyzanowski 29

-
Readers-Writers example

« Shared data store (e.g., database)
» Multiple processes can read concurrently

 Allow only one process to write at a time
— And no readers can read while the writer is writing

.

February 14, 2015 © 2014-2015 Paul Krzyzanowski

30

(

Readers-Writers example

sem mutex=1; // critical sections used only by the reader
sem canwrite=1; // critical section for N readers vs. 1 writer
int readcount = 0; // number of concurrent readers
writer () |
for (;7) A
down (&canwrite) ; // block if we cannot write

// write data

up (&canwrite) ; // end critical section

_

February 14, 2015 © 2014-2015 Paul Krzyzanowski

31

(

Readers-Writers example

critical section

_

sem mutex=1; // critical sections used only by the reader

sem canwrite=1; // critical section for N readers vs. 1 writer

int readcount = 0; // number of concurrent readers

reader () {

for (;7) A

- ~ down (&mutex) ;
ﬂ% readcount++;
.ﬁ if (readcount == 1) // first reader
_§ down (canwrite); // sleep or disallow the writer from writing
G up (&mutex) ;

// do the read
down (&mutex) ;
readcount--;
if (readcount == 0)
up (canwrite) ; // no more readers! Allow the writer access
up (&mutex) ;
// other stuff

February 14, 2015 © 2014-2015 Paul Krzyzanowski 32

(

Event Counters

.

Avoid race conditions without using mutual exclusion
An event counter Is an integer

Three operations:

— read(E): return the current value of event counter E
— advance(E): Increment E (atomically)
— await(E, v): wait until E 2 v

February 14, 2015 © 2014-2015 Paul Krzyzanowski

33

(

Producer-Consumer example

#define N 4
event counter 1in=0;
event counter out=0;

———> await (out,

sequence-N); //

// four slots in the buffer
// number of items inserted into buffer
// number of items removed from buffer

producer () {
int item, sequence=0;
for (;;) |
produce item(&item); // produce something
sequence++; // item # of item produced

(0=-3), (02-2), ...

walt until there’s room

—————> advance(&in) ;
}

}

enter item(item); //

put item in buffer

// let consumer know there’s one more item

consumer () |
int item, sequence=0;
for (;7) |
sequence++;

// 1tem # we want to consume

}
\

consume item(item) ; //

———> await(in, sequence) ; // wait until that item is present (0=1)
remove item(item); // get the item from the buffer
——> advance (&out) ; // let producer know item’s gone

consume it

February 14, 2015

© 2014-2015 Paul Krzyzanowski 34

Producer-Consumer example

#define N 4 // four slots in the buffer
event counter 1in=0; // number of items inserted into buffer
event counter out=0; // number of items removed from buffer
producer () {
int item, sequence=0;
for (;7;) |
produce item(&item) ; // produce something
sequence++; // item # of item produced
——> await (out, sequence-N); // wait until there’s room (02-3), (0=-2), ...
enter item(item); // put item in buffer
——> advance (&in) ; // let consumer know there’s one more item */

}

Suppose the producer runs for a while and the consumer does not:
lteration 1: out=0, sequence=1, await(0, 1-4): continue since 0 =2 -3 = Iin=1
lteration 2: out=0, sequence=2, await(0, 2-4): continue since 0 = -2 = in=2
lteration 3: out=0, sequence=3, await(0, 3-4): continue since 0 2 -1 = in=3
lteration 4: out=0, sequence=4, await(0, 4-4): continue since 0 =2 0 = in=4
Iteration 5: out=0, sequence=5, await(0, 5-4): wait since 0 < 1

February 14, 2015 © 2014-2015 Paul Krzyzanowski

35

Producer-Consumer example

#define N 4 // four slots in the buffer

event counter in=0; // number of items inserted into buffer
event counter out=0; // number of items removed from buffer
consumer () {

int item, sequence=0;
for (;;) |

sequence++; // item # we want to consume
——> await(in, sequence); // wait until that item is present
remove item(item); // get the item from the buffer
——> advance (&out) ; // let producer know item’s gone
consume item (item) ; // consume it

Suppose the consumer runs first:
Iteration 1. sequence = 1, await(0, 1) = sleep since0< 1

When the producer runs its first iteration, it will increment in
The consumer’s await will wake up since it's now await(1,1) and 1 = 1

(0=21)

February 14, 2015 © 2014-2015 Paul Krzyzanowski

36

-
Condition Variables / Monitors

 Higher-level synchronization primitive
* Implemented by the programming language / APIs
« Two operations:

— wait (condition_variable)
« Block until condition_variable is “signaled”

— signal(condition_variable)
« Wake up one process that is waiting on the condition variable
 Also called notify

.

February 14, 2015 © 2014-2015 Paul Krzyzanowski

37

_

Synchronization
Part Il: Inter-Process Message Passing

February 14, 2015 © 2014-2015 Paul Krzyzanowski

38

(

Communicating processes

* Must:
— Synchronize
— Exchange data

 Message passing offers:
— Data communication
— Synchronization (via waiting for messages)
— Works with processes on different machines

.

February 14, 2015 © 2014-2015 Paul Krzyzanowski

39

(

Message passing

.

* Two primitives:

— send(destination, message)
— receive(source, message)

« Operations may or may not be blocking

February 14, 2015

© 2014-2015 Paul Krzyzanowski

40

Producer-consumer example

#define N 4 // number of slots in the buffer */

consumer () {
int item, 1i;
message m;

for (1=0; 1 < N; ++1)
send (producer, &m); // send N empty messages

for (;;) |
receive (producer, &m); // get a message with the item
extract item(&m, &item); // take item out of message
send (producer, &m); // send an empty reply
consume item(item); // consume it

}

producer () |
int item;
message m;

for (;;) |

produce item(&item); // produce something

receive (consumer, &m); // wait for an empty message
build message (&m, item); // construct the message

send (consumer, &m); // send it off

}

February 14, 2015 © 2014-2015 Paul Krzyzanowski

41

-
Messaging: Rendezvous

« Sending process blocked until receive occurs

* Recelve blocks until a send occurs

« Advantages:
— No need for message buffering if on same system
— Easy & efficient to implement
— Allows for tight synchronization

» Disadvantage:
— Forces sender & receiver to run in lockstep

.

February 14, 2015 © 2014-2015 Paul Krzyzanowski

42

[

Messaging: Direct Addressing

.

« Sending process identifies receiving process

* Recelving process can identify sending process
— Or can receive it as a parameter

=
o
S
oo

February 14, 2015 © 2014-2015 Paul Krzyzanowski

43

-

Messaging: Indirect Addressing

.

* Messages sent to an intermediary data structure of FIFO
gueues

« Each queue is a mailbox

« Simplifies multiple readers

February 14, 2015 © 2014-2015 Paul Krzyzanowski

44

4)

Mailboxes

CHR TR EY

Single sender, single reader

Multiple senders, single reader

\Single sender, multiple readers Multiple senders, multiple readers)

February 14, 2015 © 2014-2015 Paul Krzyzanowski 45

[

Other common IPC mechanisms

.

 Shared files

— File locking allows concurrent access control
— Mandatory or advisory
 Signal
— A simple poke
* Pipe
— Two-way data stream using file descriptors (but not names)
— Need a common parent or threads in the same process

« Named pipe (FIFO file)
— Like a pipe but opened like a file

« Shared memory

February 14, 2015 © 2014-2015 Paul Krzyzanowski

46

(

Conditions for deadlock

.

Four conditions must hold

1. Mutual exclusion
— Only one thread can access a critical section (resource) at a time

2. Hold and wait
— Athread holds a resource but waits for another resource

3. Non-preemption of resources
— Resources can only be released voluntarily

4. Circular wait
— There is a cyclic dependency of threads waiting on resources

February 14, 2015 © 2014-2015 Paul Krzyzanowski

a7

-
Deadlock

« Resource allocation
— Resource R, is allocated to process P,: assignment edge

@(holds R,

— Resource R, is requested by process P,: request edge

wants
R; [P,

* Deadlock is present when the graph has cycles

.

February 14, 2015 © 2014-2015 Paul Krzyzanowski

48

(

Deadlock example

.

wants holds
Rz

Ry Rs

(P)—{r Py

holds

wants

Circular dependency among four processes and four resources
leads to deadlock

February 14, 2015 © 2014-2015 Paul Krzyzanowski

49

Dealing with deadlock

« Deadlock prevention
— Ensure that at least one of the necessary conditions cannot hold

 Deadlock avoidance

— Provide advance information to the OS on which resources a
process will request.

— OS can then decide if the process should wait
— But knowing which resources will be used (and when) is hard!
(impossible, really)

 Deadlock detection
— Detect when a deadlock occurs and then deal with it

* Ignore the problem
— Let the user deal with it (most common approach)

February 14, 2015 © 2014-2015 Paul Krzyzanowski

50

_

The End

February 14, 2015

© 2014-2015 Paul Krzyzanowski

51

