
CS 416: Operating Systems Design February 14, 2015

© 2014 Paul Krzyzanowski 1

Operating Systems
06. Synchronization

Paul Krzyzanowski

Rutgers University

Spring 2015

1 February 14, 2015 © 2014-2015 Paul Krzyzanowski

Concurrency

Concurrent threads/processes (informal)

– Two processes are concurrent if they run at the same time or if their

execution is interleaved in any order

Asynchronous

– The processes require occasional synchronization

Independent

– They do not have any reliance on each other

Synchronous

– Frequent synchronization with each other – order of execution is

guaranteed

Parallel

– Processes run at the same time on separate processors

2 February 14, 2015 © 2014-2015 Paul Krzyzanowski

Race Conditions

A race condition is a bug:
– The outcome of concurrent threads are unexpectedly dependent on

a specific sequence of events.

Example
– Your current bank balance is $1,000.

– Withdraw $500 from an ATM machine while a $5,000 direct deposit
is coming in

Withdrawal

• Read account balance

• Subtract 500

• Write account balance

Deposit

• Read account balance

• Add 5000

• Write account balance

Possible outcomes:

Total balance = $5500, $500, $6000

3

Execute concurrently

February 14, 2015 © 2014-2015 Paul Krzyzanowski

Synchronization

Synchronization deals with developing techniques to avoid

race conditions

Something as simple as

 x = x + 1;

Compiles to this and may cause a race condition:

 movl _x (%rip), %eax

 addl $1, %eax

 movl %eax, _x (%rip)

Potential points of

preemption for a race

condition

4 February 14, 2015 © 2014-2015 Paul Krzyzanowski

Mutual Exclusion

Critical section:

Region in a program where race conditions can arise

Mutual exclusion:

Allow only one thread to access a critical section at a time

Deadlock:

A thread is perpetually blocked (circular dependency on resources)

Starvation:

A thread is perpetually denied resources

Livelock:

Threads run but with no progress in execution

5 February 14, 2015 © 2014-2015 Paul Krzyzanowski

Avoid race conditions with locks

Withdrawal

• Acquire(transfer_lock)

• Read account balance

• Subtract 500

• Write account balance

• Release(transfer_lock)

Deposit

• Acquire(transfer_lock)

• Read account balance

• Add 5000

• Write account balance

• Release(transfer_lock)

• Grab and release locks around critical sections

• Wait if you cannot get a lock

Critical

Section

Critical

Section

Enter Critical

Section
Enter Critical

Section

Exit Critical

Section

Exit Critical

Section

6

Execute concurrently

February 14, 2015 © 2014-2015 Paul Krzyzanowski

CS 416: Operating Systems Design February 14, 2015

© 2014 Paul Krzyzanowski 2

The Critical Section Problem

Design a protocol to allow threads to enter a critical section

7 February 14, 2015 © 2014-2015 Paul Krzyzanowski

Conditions for a solution

• Mutual exclusion: No threads may be inside the same critical sections

simultaneously

• Progress: If no thread is executing in its critical section but one or more threads

want to enter, the selection of a thread cannot be delayed indefinitely.

– If one thread wants to enter, it should be permitted to enter.

– If multiple threads want to enter, exactly one should be selected.

• Bounded waiting: No thread should wait forever to enter a critical section

• No thread running outside its critical section may block others

• A good solution will make no assumptions on:

– No assumptions on # processors

– No assumption on # threads/processes

– Relative speed of each thread

8 February 14, 2015 © 2014-2015 Paul Krzyzanowski

Critical sections & the kernel

• Multiprocessors

– Multiple processes on different processors may access the kernel

simultaneously

– Interrupts may occur on multiple processors simultaneously

• Preemptive kernels

– Preemptive kernel: process can be preempted while running in

kernel mode (the scheduler may preempt a process even if it is running in

the kernel)

– Nonpreemptive kernel: processes running in kernel mode cannot

be preempted (but interrupts can still occur!)

• Single processor, nonpreemptive kernel

– Free from race conditions!

9 February 14, 2015 © 2014-2015 Paul Krzyzanowski

Solution #1: Disable Interrupts

Disable all system interrupts before entering a critical

section and re-enable them when leaving

Bad!

– Gives the thread too much control over the system

– Stops time updates and scheduling

– What if the logic in the critical section goes wrong?

– What if the critical section has a dependency on some other

interrupt, thread, or system call?

– What about multiple processors? Disabling interrupts affects just

one processor

Advantage

– Simple, guaranteed to work

– Was often used in the uniprocessor kernels

10 February 14, 2015 © 2014-2015 Paul Krzyzanowski

Solution #2: Software Test & Set Locks

Keep a shared lock variable:

 while (locked) ;

 locked = 1;

 /* do critical section */

 locked = 0;

Disadvantage:

– Buggy! There’s a race condition in setting the lock

Advantage:

– Simple to understand. It’s been used for things such as locking

mailbox files

11 February 14, 2015 © 2014-2015 Paul Krzyzanowski

Solution #3: Lockstep Synchronization

Take turns

Disadvantage:

– Forces strict alternation; if thread 2 is really slow, thread 1 is slowed

down with it. Turns asynchronous threads into synchronous threads

Thread 0

whi l e (t ur n ! = 0) ;

c r i t i c al _s ec t i on() ;

t ur n = 1 ;

Thread 1

whi l e (t ur n ! = 1) ;

c r i t i c al _s ec t i on() ;

t ur n = 0 ;

12 February 14, 2015 © 2014-2015 Paul Krzyzanowski

CS 416: Operating Systems Design February 14, 2015

© 2014 Paul Krzyzanowski 3

Software solutions for mutual exclusion

• Peterson’s solution (page 207 of text) , Dekker’s, & others

• Disadvantages:

– Difficult to implement correctly

Have to rely on volatile data types to ensure that compilers

don’t make the wrong optimizations

– Difficult to implement for an arbitrary number of threads

13 February 14, 2015 © 2014-2015 Paul Krzyzanowski

Let’s turn to hardware for help

14 February 14, 2015 © 2014-2015 Paul Krzyzanowski

Help from the processor

Atomic (indivisible) CPU instructions that help us get locks

• Test-and-set

• Compare-and-swap

• Fetch-and-Increment

These instructions execute in their entirety: they cannot be

interrupted or preempted partway through their execution

15 February 14, 2015 © 2014-2015 Paul Krzyzanowski

Test & Set

Set the lock but get told if it already was set (in which case you don’t

have it)

 int test_and_set(int *x) {

 last_value = *x;

 *x = 1;

 return last_value;

 }

How you use it to lock a critical section (i.e., enforce mutual exclusion):

whi l e (t es t _and_s et (&l oc k) == 1) ; / * s pi n * /

 /* do critical section */

 lock = 0; /* release the lock */

A
T

O
M

IC

16 February 14, 2015 © 2014-2015 Paul Krzyzanowski

Compare & swap (CAS)

Compare the value of a memory location with an old value. If they match

then replace with a new value

 i nt c ompar e_and_s wap(i n t * x , i nt o l d, i nt new) {

 i nt s av e = * x ;

 i f (s av e == ol d)

 * x = new;

 r et ur n s av e; / * al way s r e t ur n l oc at i on c ont ent s * /

 }

How you use it to grab a critical section:

Avoid the race condition – set locked to 1 only if locked was still set to 0.

 whi l e (c ompar e_and_s wap(&l oc k ed, 0 , 1) ! = 0) ;

 / * s p i n unt i l l oc k ed == 0 * /

 / * i f we got her e, l oc k ed got s et t o 1 and we hav e i t * /

 / * do c r i t i c al s ec t i on * /

 l oc k ed = 0; / * r e l eas e t he l oc k * /

A
T

O
M

IC

17 February 14, 2015 © 2014-2015 Paul Krzyzanowski

Fetch & Increment

Increment a memory location; return previous value

 i nt f et c h_and_i nc r ement (i n t * x) {

 l as t _v al ue = * x ;

 * x = * x + 1;

 r et ur n l as t _v al ue;

 }

A
T

O
M

IC

18 February 14, 2015 © 2014-2015 Paul Krzyzanowski

CS 416: Operating Systems Design February 14, 2015

© 2014 Paul Krzyzanowski 4

Fetch & Increment

Check that it’s your turn for the critical section

Ticket lock

 t i c k e t = 0; t ur n = 0;

 . . .

 my t ur n = f et c h_and_ i nc r ement (&t i c k et) ;

whi l e (t ur n ! = my t ur n) ;

 / * do c r i t i c al s ec t i on * /

f et c h_and_i nc r ement (&t ur n) ;

t i c k e t

t ur n

19 February 14, 2015 © 2014-2015 Paul Krzyzanowski

The problem with spin locks

• All these solutions require busy waiting

– Tight loop that spins waiting for a turn: busy waiting or spin lock

• Nothing useful gets done!

– Wastes CPU cycles

20 February 14, 2015 © 2014-2015 Paul Krzyzanowski

Priority Inversion

• Spin locks may lead to priority inversion

• The process with the lock may not be allowed to run!

– Suppose a lower priority process obtained a lock

– Higher priority process is always ready to run but loops on trying to

get the lock

– Scheduler always schedules the higher-priority process

– Priority inversion

• If the low priority process would get to run & release its lock, it

would then accelerate the time for the high priority process to get

a chance to get the lock and do useful work

• Try explaining that to a scheduler!

21 February 14, 2015 © 2014-2015 Paul Krzyzanowski

Priority Inheritance

• Technique to avoid priority inversion

• Increase the priority of any process in a critical section to

the maximum of any process waiting on any resource for

which the process has a lock

• When the lock is released, the priority goes to its normal

level

22 February 14, 2015 © 2014-2015 Paul Krzyzanowski

Spin locks aren’t great

Can we block until we can get the critical

section?

23 February 14, 2015 © 2014-2015 Paul Krzyzanowski

How about this?
publ i c c l as s Loc k

{

pr i v a t e i nt v al = UNLOCKED;

 pr i v a t e Thr eadQueue wai t Queue = new Thr eadQueue() ;

 publ i c v oi d ac qu i r e() {

 Thr ead me = Thr ead. c ur r ent Thr ead() ;

 whi l e (Tes t AndSet (v al) == LOCKED) {

 wai t Queue. wa i t For Ac c es s (me) ; / / Put s el f i n queue

 Thr ead. s l eep() ; / / Put s el f t o s l eep

 }

 / / Got t he l oc k

 }

 publ i c v oi d r el eas e() {

 Thr ead nex t = wa i t Queue. nex t Thr ead() ;

 v al = UNLOCKED;

 i f (nex t ! = nul l)

 nex t . r eady () ; / / Wak e up a wai t i ng t h r ead

 }

}

24 February 14, 2015 © 2014-2015 Paul Krzyzanowski

CS 416: Operating Systems Design February 14, 2015

© 2014 Paul Krzyzanowski 5

Sorry…

• Accessing the wait queue is a critical section

– Need to add mutual exclusion

• Need extra lock check in acquire

– Thread may find the lock busy

– Another thread may release the lock but before the first thread

enqueues itself

• This can get ugly!

25 February 14, 2015 © 2014-2015 Paul Krzyzanowski

Semaphores

• Count # of wake-ups saved for future use

• Two atomic operations:

down(sem s) {

 if (s > 0)

 s = s – 1;

 else

 sleep on event s

}

up(sem s) {

 if (someone is waiting on s)

 wake up one of the threads

 else

 s = s + 1;

}

//initialize

mutex = 1;

down(&mutex)

// critical section

up(&mutex)

 Binary semaphore

26 February 14, 2015 © 2014-2015 Paul Krzyzanowski

Semaphores

Count the number of threads that may enter a critical

section at any given time.

– Each down decreases the number of future accesses

– When no more are allowed, processes have to wait

– Each up lets a waiting process get in

27 February 14, 2015 © 2014-2015 Paul Krzyzanowski

Producer-Consumer example

• Producer

– Generates items that go into a buffer

– Maximum buffer capacity = N

– If the producer fills the buffer, it must wait (sleep)

• Consumer

– Consumes things from the buffer

– If there’s nothing in the buffer, it must wait (sleep)

• This is known as the Bounded-Buffer Problem

28 February 14, 2015 © 2014-2015 Paul Krzyzanowski

Producer-Consumer example
sem mut ex=1, empt y=N, f ul l =0;

pr oducer () {

 f or (; ;) {

 pr oduce_i t em(&i t em) ; / / pr oduce somet hi ng

 down(&empt y) ; / / decr ement empt y count

 down(&mut ex) ; / / s t ar t c r i t i cal sect i on

 ent er _i t em(i t em) ; / / put i t em i n buf f er

 up(&mut ex) ; / / end cr i t i cal sect i on

 up(&f ul l) ; / / +1 f ul l s l ot

 }

}

consumer () {

 f or (; ;) {

 down(&f ul l) ; / / one l ess i t em

 down(&mut ex) ; / / s t ar t c r i t i cal sect i on

 r emove_i t em(i t em) ; / / get t he i t em f r om t he buf f er

 up(&mut ex) ; / / end cr i t i cal sect i on

 up(&empt y) ; / / one mor e empt y s l ot

 consume_i t em(i t em) ; / / consume i t

 }

}

29 February 14, 2015 © 2014-2015 Paul Krzyzanowski

Readers-Writers example

• Shared data store (e.g., database)

• Multiple processes can read concurrently

• Allow only one process to write at a time

– And no readers can read while the writer is writing

30 February 14, 2015 © 2014-2015 Paul Krzyzanowski

CS 416: Operating Systems Design February 14, 2015

© 2014 Paul Krzyzanowski 6

Readers-Writers example
sem mut ex =1; / / c r i t i c al s ec t i ons used onl y by t he r eader

sem c anwr i t e=1; / / c r i t i c al s ec t i on f or N r eader s v s . 1 wr i t er

i nt r eadc ount = 0; / / number of concur r ent r eader s

wr i t er () {

 f or (; ;) {

 down(&c anwr i t e) ; / / bl oc k i f we cannot wr i t e

 / / wr i t e dat a

 up(&c anwr i t e) ; / / end c r i t i c al s ec t i on

 }

}

31 February 14, 2015 © 2014-2015 Paul Krzyzanowski

Readers-Writers example
sem mut ex =1; / / c r i t i c al s ec t i ons used onl y by t he r eader

sem c anwr i t e=1; / / c r i t i c al s ec t i on f or N r eader s v s . 1 wr i t er

i nt r eadc ount = 0; / / number of concur r ent r eader s

r eader () {

 f or (; ;) {

 down(&mut ex) ;

 r eadc ount ++;

 i f (r eadc ount == 1) / / f i r s t r eader

 down(c anwr i t e) ; / / s l eep or di s al l ow t he wr i t er f r om wr i t i ng

 up(&mut ex) ;

 / / do t he r ead

 down(&mut ex) ;

 r eadc ount - - ;

 i f (r eadc ount == 0)

 up(c anwr i t e) ; / / no mor e r eader s ! Al l ow t he wr i t er ac cess

 up(&mut ex) ;

 / / ot her s t uf f

 }

}

c
ri
ti
c
a
l

s
e
c
ti
o
n

c
ri
ti
c
a
l

s
e
c
ti
o
n

32 February 14, 2015 © 2014-2015 Paul Krzyzanowski

Event Counters

Avoid race conditions without using mutual exclusion

An event counter is an integer

Three operations:

– read(E): return the current value of event counter E

– advance(E): increment E (atomically)

– await(E, v): wait until E ≥ v

33 February 14, 2015 © 2014-2015 Paul Krzyzanowski

Producer-Consumer example
#de f i ne N 4 / / f ou r s l o t s i n t he bu f f e r

ev en t _c oun t e r i n=0 ; / / number o f i t ems i ns e r t ed i n t o bu f f e r

ev en t _c oun t e r ou t =0 ; / / number o f i t ems r emov ed f r om bu f f e r

p r oduc er () {

 i n t i t em, s equenc e=0 ;

 f o r (; ;) {

 p r oduc e_ i t em(&i t em) ; / / p r oduc e s omet h i ng

 s equenc e++; / / i t em # o f i t em p r oduc ed

 awa i t (ou t , s equenc e - N) ; (0≥-3), (0≥-2), …

 en t e r _ i t em(i t em) ; / / pu t i t em i n bu f f e r

 adv anc e(&i n) ;

 }

}

c ons umer () {

 i n t i t em, s equenc e=0 ;

 f o r (; ;) {

 s equenc e++; / / i t em # we wan t t o c ons ume

 awa i t (i n , s equenc e) ; / / wa i t un t i l t ha t i t em i s p r es en t (0≥1)

 r emov e_ i t em(i t em) ; / / ge t t he i t em f r om t he bu f f e r

 adv anc e(&ou t) ;

 c ons ume_ i t em(i t em) ; / / c ons ume i t

 }

}

34 February 14, 2015 © 2014-2015 Paul Krzyzanowski

Producer-Consumer example
#de f i ne N 4 / / f ou r s l o t s i n t he bu f f e r

ev en t _c oun t e r i n=0 ; / / number o f i t ems i ns e r t ed i n t o bu f f e r

ev en t _c oun t e r ou t =0 ; / / number o f i t ems r emov ed f r om bu f f e r

p r oduc er () {

 i n t i t em, s equenc e=0 ;

 f o r (; ;) {

 p r oduc e_ i t em(&i t em) ; / / p r oduc e s omet h i ng

 s equenc e++; / / i t em # o f i t em p r oduc ed

 awa i t (ou t , s equenc e - N) ; (0≥-3), (0≥-2), …

 en t e r _ i t em(i t em) ; / / pu t i t em i n bu f f e r

 adv anc e(&i n) ;

 }

}

Suppose the producer runs for a while and the consumer does not:

Iteration 1: out=0, sequence=1, await(0, 1-4): continue since 0 ≥ -3 ⇒ in=1

Iteration 2: out=0, sequence=2, await(0, 2-4): continue since 0 ≥ -2 ⇒ in=2

Iteration 3: out=0, sequence=3, await(0, 3-4): continue since 0 ≥ -1 ⇒ in=3

Iteration 4: out=0, sequence=4, await(0, 4-4): continue since 0 ≥ 0 ⇒ in=4

Iteration 5: out=0, sequence=5, await(0, 5-4): wait since 0 < 1

35 February 14, 2015 © 2014-2015 Paul Krzyzanowski

Producer-Consumer example
#de f i ne N 4 / / f ou r s l o t s i n t he bu f f e r

ev en t _c oun t e r i n=0 ; / / number o f i t ems i ns e r t ed i n t o bu f f e r

ev en t _c oun t e r ou t =0 ; / / number o f i t ems r emov ed f r om bu f f e r

c ons umer () {

 i n t i t em, s equenc e=0 ;

 f o r (; ;) {

 s equenc e++; / / i t em # we wan t t o c ons ume

 awa i t (i n , s equenc e) ; / / wa i t un t i l t ha t i t em i s p r es en t (0≥1)

 r emov e_ i t em(i t em) ; / / ge t t he i t em f r om t he bu f f e r

 adv anc e(&ou t) ;

 c ons ume_ i t em(i t em) ; / / c ons ume i t

 }

}

Suppose the consumer runs first:

Iteration 1: sequence = 1, await(0, 1) ⇒ sleep since 0 < 1

When the producer runs its first iteration, it will increment in

The consumer’s await will wake up since it’s now await(1,1) and 1 ≥ 1

36 February 14, 2015 © 2014-2015 Paul Krzyzanowski

CS 416: Operating Systems Design February 14, 2015

© 2014 Paul Krzyzanowski 7

Condition Variables / Monitors

• Higher-level synchronization primitive

• Implemented by the programming language / APIs

• Two operations:

– wait (condition_variable)

• Block until condition_variable is “signaled”

– signal(condition_variable)

• Wake up one process that is waiting on the condition variable

• Also called notify

37 February 14, 2015 © 2014-2015 Paul Krzyzanowski

Synchronization

Part II: Inter-Process Message Passing

38 February 14, 2015 © 2014-2015 Paul Krzyzanowski

Communicating processes

• Must:

– Synchronize

– Exchange data

• Message passing offers:

– Data communication

– Synchronization (via waiting for messages)

– Works with processes on different machines

39 February 14, 2015 © 2014-2015 Paul Krzyzanowski

Message passing

• Two primitives:

– send(destination, message)

– receive(source, message)

• Operations may or may not be blocking

40 February 14, 2015 © 2014-2015 Paul Krzyzanowski

Producer-consumer example
#def i ne N 4 / / number of s l ot s i n t he buf f er * /

consumer () {

 i nt i t em, i ;

 mes sage m;

 f or (i =0; i < N; ++i)

 send(pr oduc er , &m) ; / / send N empt y mess ages

 f or (; ;) {

 r ec ei ve(pr oducer , &m) ; / / get a mess age wi t h t he i t em

 ex t r ac t _i t em(&m, &i t em) ; / / t ake i t em out of mess age

 send(pr oduc er , &m) ; / / send an empt y r epl y

 consume_i t em(i t em) ; / / cons ume i t

 }

}

pr oducer () {

 i nt i t em;

 mes sage m;

 f or (; ;) {

 pr oduce_i t em(&i t em) ; / / pr oduc e somet hi ng

 r ec ei ve(c onsumer , &m) ; / / wai t f or an empt y mes sage

 bui l d_mes sage(&m, i t em) ; / / cons t r uc t t he mes sage

 send(cons umer , &m) ; / / send i t of f

 }

}

41 February 14, 2015 © 2014-2015 Paul Krzyzanowski

Messaging: Rendezvous

• Sending process blocked until receive occurs

• Receive blocks until a send occurs

• Advantages:

– No need for message buffering if on same system

– Easy & efficient to implement

– Allows for tight synchronization

• Disadvantage:

– Forces sender & receiver to run in lockstep

42 February 14, 2015 © 2014-2015 Paul Krzyzanowski

CS 416: Operating Systems Design February 14, 2015

© 2014 Paul Krzyzanowski 8

Messaging: Direct Addressing

• Sending process identifies receiving process

• Receiving process can identify sending process

– Or can receive it as a parameter

S0 R0

S0

S1

S2

R0

43 February 14, 2015 © 2014-2015 Paul Krzyzanowski

Messaging: Indirect Addressing

• Messages sent to an intermediary data structure of FIFO

queues

• Each queue is a mailbox

• Simplifies multiple readers

44 February 14, 2015 © 2014-2015 Paul Krzyzanowski

Mailboxes

S0 R0 mailbox

S0 R1 mailbox

R2

R0

R1 mailbox

R2

R0

S1 R0 mailbox

S0

S2
Single sender, single reader

Single sender, multiple readers Multiple senders, multiple readers

Multiple senders, single reader

S1

S0

S2

45 February 14, 2015 © 2014-2015 Paul Krzyzanowski

Other common IPC mechanisms

• Shared files

– File locking allows concurrent access control

– Mandatory or advisory

• Signal

– A simple poke

• Pipe

– Two-way data stream using file descriptors (but not names)

– Need a common parent or threads in the same process

• Named pipe (FIFO file)

– Like a pipe but opened like a file

• Shared memory

February 14, 2015 © 2014-2015 Paul Krzyzanowski 46

Conditions for deadlock

Four conditions must hold

1. Mutual exclusion

– Only one thread can access a critical section (resource) at a time

2. Hold and wait

– A thread holds a resource but waits for another resource

3. Non-preemption of resources

– Resources can only be released voluntarily

4. Circular wait

– There is a cyclic dependency of threads waiting on resources

47 February 14, 2015 © 2014-2015 Paul Krzyzanowski

Deadlock

• Resource allocation

– Resource R1 is allocated to process P1: assignment edge

– Resource R1 is requested by process P1: request edge

• Deadlock is present when the graph has cycles

R1 P1

R1 P1

holds

wants

February 14, 2015 © 2014-2015 Paul Krzyzanowski 48

CS 416: Operating Systems Design February 14, 2015

© 2014 Paul Krzyzanowski 9

Deadlock example

Circular dependency among four processes and four resources

leads to deadlock

R2

R4

R1 R3

wants
h

o
ld

s

P1

P4

P2

P3

w
a
n
ts

holds

February 14, 2015 © 2014-2015 Paul Krzyzanowski 49

Dealing with deadlock

• Deadlock prevention

– Ensure that at least one of the necessary conditions cannot hold

• Deadlock avoidance

– Provide advance information to the OS on which resources a

process will request.

– OS can then decide if the process should wait

– But knowing which resources will be used (and when) is hard!

(impossible, really)

• Deadlock detection

– Detect when a deadlock occurs and then deal with it

• Ignore the problem

– Let the user deal with it (most common approach)

50 February 14, 2015 © 2014-2015 Paul Krzyzanowski

The End

February 14, 2015 51 © 2014-2015 Paul Krzyzanowski

