
Operating Systems
04. Processes

Paul Krzyzanowski

Rutgers University

Spring 2015

1 February 2, 2015 © 2014-2015 Paul Krzyzanowski

Key concepts from last week

February 2, 2015 © 2014-2015 Paul Krzyzanowski 2

Boot Loader

• Multi-stage boot loader

• Old Intel PC architecture (still used!)

– BIOS

– Master Boot Record – located at block 0

– Volume Boot Record

– OS Loader

• Current PC architecture (2005+)

– UEFI – knows how to read one or more file systems

– Loads OS loader from a boot partition

• Embedded systems (e.g., ARM-based devices)

– Custom boot firmware on the processor chip

 February 2, 2015 © 2014-2015 Paul Krzyzanowski 3

Operating System vs. Kernel

• Kernel

– “nucleus” of the OS; main component

– Provides abstraction layer to underlying hardware

– Manages system resources (CPU, file systems, memory, network)

– Enforces policies

• Rest of the OS

– Utility software, windowing system, print spoolers, etc.

• Kernel mode vs. user mode execution

– Flag in the CPU

– Kernel mode = can execute privileged instructions

February 2, 2015 © 2014-2015 Paul Krzyzanowski 4

Mode switch

• Transition from user to kernel mode (and back)

• Includes a change in flow

– Cannot just execute user’s instructions in kernel mode!

– Well-defined addresses set up at initialization

• Change mode via:

– Hardware interrupt

– Software trap (or syscall)

– Violations (exceptions): illegal instruction or memory reference

February 2, 2015 © 2014-2015 Paul Krzyzanowski 5

Context Switch

• Mode switch + change executing process

February 2, 2015 © 2014-2015 Paul Krzyzanowski 6

Timer interrupts

• Crucial for:

– Preempting a running process to give someone else a chance

(force a context switch)

• Including ability to kill the process

– Giving the OS a chance to poll hardware

– OS bookkeeping

February 2, 2015 © 2014-2015 Paul Krzyzanowski 7

Timer interrupts

• Windows

– Typically 64 or 100 interrupts per second

– Apps can raise this to 1024 interrupts per second

• Linux

– Interrupts from Programmable Interval Timer (PIT) or HPET (High

Precision Event Timer) and from a local APIC timer (one per CPU)

– all at the same rate

– Interrupt frequency varies per kernel and configuration

• Linux 2.4: 100 Hz

• Linux 2.6.0 – 2.6.13: 1000 Hz

• Linux 2.6.14+ : 250 Hz

• Linux 2.6.18 and beyond: aperiodic – tickless kernel

– PIT not used for periodic interrupts; just APIC timer interrupts

– Kernel determines when the next interrupt should take place

February 2, 2015 © 2014-2015 Paul Krzyzanowski 8

Processes

February 2, 2015 © 2014-2015 Paul Krzyzanowski 9

Process

• Program: code & static data stored in a file

• Process: a running program

– Each process has its own address space

(we’ll look at this later)

– Memory map

• Text: compiled program

• Data: initialized static data

• BSS: uninitialized static data

• Heap: dynamically allocated memory

• Stack: call stack

– System state: open files, pending signals

– Processor statte:

• Program counter

• CPU registers

heap

stack

Text (code) & initialized

data come from the

stored program

February 2, 2015 © 2014-2015 Paul Krzyzanowski 10

data+bss

text

Growing memory

heap

stack

Data area (heap) can grow via a system call

that requests more memory

Stack expanded automatically

February 2, 2015 © 2014-2015 Paul Krzyzanowski 11

data+bss

text

Contexts

• Entering the kernel

– Hardware interrupts

• Asynchronous events (I/O, clock, etc.)

• Do not relate to the context of the current process [kernel context]

– Violations

• Are related to the context of the current process [process context]

• Examples: illegal memory access, divide by zero, illegal instruction

– Software initiated traps (software interrupts)

• System call from the current process [process context]

• The view of memory does not change on a trap

– The currently executing process’ address space is active on a trap

• Saving state

– Kernel stack switched in upon entering kernel mode

– Kernel must save machine state before servicing event

• Registers, flags (program status word), program counter, …

February 2, 2015 © 2014-2015 Paul Krzyzanowski 12

Processes in a Multitasking Environment

• Multiple concurrent processes

– Each process has a unique identifier: Process ID (PID)

• Asynchronous events (interrupts) may occur

– The OS will have to take care of them

• Processes may request operations that take a long time

– They have nothing to do now but wait

• Goal: always have some process running

– Context saving/switching

• Processes may be suspended and resumed

• Need to save all state about a process so we can restore it

February 2, 2015 © 2014-2015 Paul Krzyzanowski 13

Process states

Running

Ready Blocked

Preemption I/O

I/O complete

Scheduler

February 2, 2015 © 2014-2015 Paul Krzyzanowski 14

Keeping track of processes

• Process list stores a Process Control Block (PCB) per process

• A Process Control Block contains:

– Process ID

– Machine state (registers, program counter, stack pointer)

– Parent & list of children

– Process state (ready, running, blocked)

– Memory map

– Open file descriptors

– Owner (user ID) – determine access & signaling privileges

– Event descriptor if the process is blocked

– Signals that have not yet been handled

– Policy items: Scheduling parameters, memory limits

– Timers for accounting (time & resource utilization)

– (Process group)

February 2, 2015 © 2014-2015 Paul Krzyzanowski 15

System calls

Entry

Trap to system call handler

– Save CPU state

– Verify parameters are in a valid

address

– Copy them to kernel address space

– Call the function that implements the

system call

• If the function cannot be satisfied

immediately then

– Put process on a blocked list

– Context switch to let another ready

process run

Return from system call or

interrupt

– Check for signals to the process

• Call the appropriate handler if signal is not

ignored

– Check if another process should run

• Context switch to let the other process

run

• Put our process on a ready list

– Calculate time spent in the call for

profiling/accounting

– Restore user process state

– Return from interrupt

February 2, 2015 © 2014-2015 Paul Krzyzanowski 16

Processes in Linux

• The OS creates one task on startup:

 init: the parent of all tasks

 launchd: replacement for init on Mac OS X and FreeBSD

• Process state stored in struct task_struct

– Defined in linux/sched.h

• Stored as a circular, doubly linked list

struct task_struct init_task; /* static definition of the first task*/

init_task task 2 task 3 task N

February 2, 2015 © 2014-2015 Paul Krzyzanowski 17

Processes in Linux

Iterating through processes

 for (p = &init_task; ((p = next_task(p)) != &init_task;)

{

 /* whatever */

 }

The current process on the current CPU is obtained from the

macro current

 current->state = TASK_STOPPED;

February 2, 2015 © 2014-2015 Paul Krzyzanowski 18

init_task task 2 task 3 task N

Processes on Ready & Blocked Queues

Ready

Disk 1

Disk 2

Network 1

Network 2

PCB 12

PCB 15

PCB 7

PCB 118

PCB 31

PCB 43

PCB 101

PCB 39

PCB 8

PCB 95

PCB 64

Blocked

The list of ready processes is

called a run queue

February 2, 2015 © 2014-2015 Paul Krzyzanowski 19

Process States: a bit more detail

User

Running

Ready Blocked

Sys call

or Interrupt

I/O complete

Kernel

Running

Return

Sleep

Wake up

Zombie

exit
Linger until a

parent process

returns from wait()

[allows a parent to

get the exit code]

Reschedule

Created

[Terminated]

interrupt context: not part of any process state

February 2, 2015 © 2014-2015 Paul Krzyzanowski 20

Preempt

Creating a process under POSIX

fork system call

– Clones a process into two processes

• New context is created: duplicate of parent process

– fork returns 0 to the child and the process ID to the parent

• Both processes execute at the point of the return from the fork

February 2, 2015 © 2014-2015 Paul Krzyzanowski 21

What happens in fork?

• Check for available resources

• Allocate a new PCB

• Assign a unique PID

• Check process limits for user

• Set child state to “created”

• Copy data from parent PCB slot to child

• Increment counts on current directory & open files

• Copy parent context in memory (or set copy on write)

• Set child state to “ready to run”

• Wait for the scheduler to run the process

February 2, 2015 © 2014-2015 Paul Krzyzanowski 22

Fork Example

#include <stdio.h>

main(int argc, char **argv) {

 int pid;

 switch (pid=fork()) {

 case 0: printf("I'm the child\n");

 break;

 default:

 printf("I'm the parent of %d\n", pid);

 break;

 case -1:

 perror("fork");

 }

}

February 2, 2015 © 2014-2015 Paul Krzyzanowski 23

Running other programs

execve: replace the current process image with a new one

– See also execl, execle, execlp, execvp, execvP

(these are just variation wrappers that take different parameters)

• New program inherits:

– Processes group ID

– Open files

– Access groups

– Working directory

– Root directory

– Resource usages & limits

– Timers

– File mode mask

– Signal mask

February 2, 2015 © 2014-2015 Paul Krzyzanowski 24

Exec Example

#include <unistd.h>

main(int argc, char **argv) {

char *av[] = { "ls", "-al", "/", 0 };

execvp("ls", av);

perror("ls failed to run!");

exit(1);

}

February 2, 2015 © 2014-2015 Paul Krzyzanowski 25

Execute the command: ls -al /

The perror and exit functions

run ONLY if execvp failed –

 otherwise the new program

overlays the current process

Fork & exec combined

• UNIX runs new programs via fork followed by exec

– Step 1. Clone

– Step 2. Replace

• Windows approach

– CreateProcess system call to create a new child process

– Specify the executable file and parameters

– Identify startup properties (windows size, input/output handles)

– Specify directory, environment, and whether open files are inherited

February 2, 2015 © 2014-2015 Paul Krzyzanowski 26

Fork & exec combined

• UNIX creates processes via fork followed by exec

– Step 1. Clone

– Step 2. Replace

• Windows approach

– CreateProcess system call to create a new child process

– Specify the executable file and parameters

– Identify startup properties (windows size, input/output handles)

– Specify directory, environment, and whether open files are inherited

February 2, 2015 © 2014-2015 Paul Krzyzanowski 27

BOOL WINAPI CreateProcess (

 _In_opt_ LPCTSTR lpApplicationName,

 _Inout_opt_ LPTSTR lpCommandLine,

 _In_opt_ LPSECURITY_ATTRIBUTES lpProcessAttributes,

 _In_opt_ LPSECURITY_ATTRIBUTES lpThreadAttributes,

 In BOOL bInheritHandles,

 In DWORD dwCreationFlags,

 _In_opt_ LPVOID lpEnvironment,

 _In_opt_ LPCTSTR lpCurrentDirectory,

 In LPSTARTUPINFO lpStartupInfo,

 Out LPPROCESS_INFORMATION lpProcessInformation

);

Exiting a process

exit system call

#include <stdlib.h>

main(int argc, char **argv) {

 exit(0);

}

Exit status that can be

returned to the parent

February 2, 2015 © 2014-2015 Paul Krzyzanowski 28

exit: what happens?

• Ignore all signals

• If the process is associated with a controlling terminal

– Send a hang-up signal to all members of the process group

– reset process group for all members to 0

• close all open files

• release current directory

• release current changed root, if any

• free memory associated with the process

• write an accounting record (if accounting)

• make the process state zombie

• assign the parent process ID of any children to be 1 (init)

• send a “death of child” signal to parent process (SIGCHLD)

• context switch (we have to!)

February 2, 2015 © 2014-2015 Paul Krzyzanowski 29

Wait for a child process to die

wait system call

• Suspend execution until a child process exits

• wait returns the exit status of that child.

int pid, my_pid, status;

switch (my_pid=fork()) {

case 0: /* do child stuff */ break;

case -1: /* do error stuff */ break;

default: /* wait for child to exit */

 pid=wait(&status);

 if (pid != -1)

 printf("got exit of %d\n", WEXITSTATUS(status));

 break;

}

February 2, 2015 © 2014-2015 Paul Krzyzanowski 30

Parent & child processes

fork

execv exit

wait parent

child

February 2, 2015 © 2014-2015 Paul Krzyzanowski 31

Signals

• Inform processes of asynchronous events

– Processes may specify signal handlers

• Processes can poke each other

(if they are owned by the same user)

• Sending a signal:

– kill (int pid, int signal_number)

• Detecting a signal:

– signal (signal_number, function)

February 2, 2015 © 2014-2015 Paul Krzyzanowski 32

The End

February 2, 2015 33 © 2014-2015 Paul Krzyzanowski

