Operating Systems 04. Processes

Paul Krzyzanowski

Rutgers University

Spring 2015

Key concepts from last week

Boot Loader

- Multi-stage boot loader
- Old Intel PC architecture (*still used!*)
 - BIOS
 - Master Boot Record located at block 0
 - Volume Boot Record
 - OS Loader
- Current PC architecture (2005+)
 - UEFI knows how to read one or more file systems
 - Loads OS loader from a boot partition
- Embedded systems (e.g., ARM-based devices)
 - Custom boot firmware on the processor chip

Operating System vs. Kernel

- Kernel
 - "nucleus" of the OS; main component
 - Provides abstraction layer to underlying hardware
 - Manages system resources (CPU, file systems, memory, network)
 - Enforces policies
- Rest of the OS
 - Utility software, windowing system, print spoolers, etc.
- Kernel mode vs. user mode execution
 - Flag in the CPU
 - Kernel mode = can execute privileged instructions

Mode switch

- Transition from user to kernel mode (and back)
- Includes a change in flow
 - Cannot just execute user's instructions in kernel mode!
 - Well-defined addresses set up at initialization
- Change mode via:
 - Hardware interrupt
 - Software trap (or syscall)
 - Violations (exceptions): illegal instruction or memory reference

Context Switch

• Mode switch + change executing process

Timer interrupts

- Crucial for:
 - Preempting a running process to give someone else a chance (force a context switch)
 - Including ability to kill the process
 - Giving the OS a chance to poll hardware
 - OS bookkeeping

Timer interrupts

- Windows
 - Typically 64 or 100 interrupts per second
 - Apps can raise this to 1024 interrupts per second
- Linux
 - Interrupts from Programmable Interval Timer (PIT) or HPET (High Precision Event Timer) and from a local APIC timer (one per CPU)
 all at the same rate
 - Interrupt frequency varies per kernel and configuration
 - Linux 2.4: 100 Hz
 - Linux 2.6.0 2.6.13: 1000 Hz
 - Linux 2.6.14+ : 250 Hz
 - Linux 2.6.18 and beyond: aperiodic tickless kernel
 - PIT not used for periodic interrupts; just APIC timer interrupts
 - Kernel determines when the next interrupt should take place

Processes

Process

Contexts

- Entering the kernel
 - Hardware interrupts
 - Asynchronous events (I/O, clock, etc.)
 - <u>Do not</u> relate to the context of the current process [kernel context]
 - Violations
 - Are related to the context of the current process [process context]
 - Examples: illegal memory access, divide by zero, illegal instruction
 - Software initiated traps (software interrupts)
 - System call from the current process [process context]
- The view of memory does not change on a trap
 - The currently executing process' address space is active on a trap
- Saving state
 - Kernel stack switched in upon entering kernel mode
 - Kernel must save machine state before servicing event
 - Registers, flags (program status word), program counter, ...

Processes in a Multitasking Environment

- Multiple concurrent processes
 - Each process has a unique identifier: Process ID (PID)
- Asynchronous events (interrupts) may occur
 - The OS will have to take care of them
- Processes may request operations that take a long time
 - They have nothing to do now but wait
- Goal: always have some process running
 - Context saving/switching
 - Processes may be suspended and resumed
 - Need to save all state about a process so we can restore it

Keeping track of processes

- Process list stores a Process Control Block (PCB) per process
- A Process Control Block contains:
 - Process ID
 - Machine state (registers, program counter, stack pointer)
 - Parent & list of children
 - Process state (ready, running, blocked)
 - Memory map
 - Open file descriptors
 - Owner (user ID) determine access & signaling privileges
 - Event descriptor if the process is blocked
 - Signals that have not yet been handled
 - Policy items: Scheduling parameters, memory limits
 - Timers for accounting (time & resource utilization)
 - (Process group)

System calls

Entry Trap to system call handler

- Save CPU state
- Verify parameters are in a valid address
- Copy them to kernel address space
- Call the function that implements the system call
 - If the function cannot be satisfied immediately then
 - Put process on a *blocked* list
 - Context switch to let another ready process run

Return from system call or interrupt

- Check for signals to the process
 - Call the appropriate handler if signal is not ignored
- Check if another process should run
 - Context switch to let the other process run
 - Put our process on a *ready* list
- Calculate time spent in the call for profiling/accounting
- Restore user process state
- Return from interrupt

Processes in Linux

- The OS creates one task on startup: *init*: the parent of all tasks *launchd*: replacement for *init* on Mac OS X and FreeBSD
- Process state stored in struct task_struct
 - Defined in linux/sched.h
- Stored as a circular, doubly linked list

Processes in Linux

```
Iterating through processes
```

```
for (p = &init_task; ((p = next_task(p)) != &init_task; )
    /* whatever */
}
```

The current process on the current CPU is obtained from the macro $\mathtt{current}$

```
current->state = TASK_STOPPED;
init_task task 2 task 3 task N
```


Creating a process under POSIX

fork system call

- Clones a process into two processes
 - New context is created: duplicate of parent process
- fork returns 0 to the child and the process ID to the parent
 - Both processes execute at the point of the return from the *fork*

What happens in fork?

- Check for available resources
- Allocate a new PCB
- Assign a unique PID
- Check process limits for user
- Set child state to "created"
- Copy data from parent PCB slot to child
- Increment counts on current directory & open files
- Copy parent context in memory (or set *copy on write*)
- · Set child state to "ready to run"
- Wait for the scheduler to run the process

Fork Example

```
#include <stdio.h>
main(int argc, char **argv) {
   int pid;
   switch (pid=fork()) {
   case 0: printf("I'm the child\n");
       break;
   default:
       printf("I'm the parent of %d\n", pid);
       break;
   case -1:
       perror("fork");
   }
}
```

Running other programs

execve: replace the current process image with a new one

- See also execl, execle, execlp, execvp, execvP
 (these are just variation wrappers that take different parameters)
- New program inherits:
 - Processes group ID
 - Open files
 - Access groups
 - Working directory
 - Root directory
 - Resource usages & limits
 - Timers
 - File mode mask
 - Signal mask

Exec Example

```
Execute the command: ls -al /
```

```
#include <unistd.h>
main(int argc, char **argv) {
    char *av[] = { "ls", "-al", "/", 0 };
   execvp("ls", av);
   perror("ls failed to run!");
   exit(1);
                                         The perror and exit functions
                                         run ONLY if execvp failed –
                                         otherwise the new program
                                         overlays the current process
```

Fork & exec combined

- UNIX runs new programs via *fork* followed by *exec*
 - Step 1. Clone
 - Step 2. Replace
- Windows approach
 - CreateProcess system call to create a new child process
 - Specify the executable file and parameters
 - Identify startup properties (windows size, input/output handles)
 - Specify directory, environment, and whether open files are inherited

Fork & exec combined

- UNIX creates processes via fork followed by exec
 - Step 1. Clone
 - Step 2. Replace

exit: what happens?

- Ignore all signals
- If the process is associated with a controlling terminal
 - Send a hang-up signal to all members of the process group
 - reset process group for all members to 0
- close all open files
- release current directory
- release current changed root, if any
- free memory associated with the process
- write an accounting record (if accounting)
- make the process state zombie
- assign the parent process ID of any children to be 1 (init)
- send a "death of child" signal to parent process (SIGCHLD)
- context switch (we have to!)

Wait for a child process to die

wait system call

- Suspend execution until a child process exits
- wait returns the exit status of that child.

Signals

- Inform processes of asynchronous events
 - Processes may specify signal handlers
- Processes can poke each other (if they are owned by the same user)
- Sending a signal:
 - kill (int pid, int signal_number)
- Detecting a signal:
 - signal (signal_number, function)

The End