Operating Systems

Week 2 Recitation: The system call

Paul Krzyzanowski
Rutgers University

Spring 2015

_

February 14, 2015 © 2014-2015 Paul Krzyzanowski

-
System calls

« System calls are an operating system’s API
— The set of functions that the operating system exposes to processes

* If you want to the OS to do something, you tell it via a

system call
* Examples
Windows Linux
NtOpenFile open
NtReadFile read
NtCreateProcess fork
NtGetCurrentProcessorNumber | getpid

See http://j00ru.vexillium.org/ntapi/ for a list of Windows system calls
See http://linux-documentation.com/en/man/man2/ for a list of Linux system calls

.

February 14, 2015 © 2014-2015 Paul Krzyzanowski 2

-
What are system calls used for?

» Anything to do with:

— Accessing devices — Communicating with other processes
— Accessing files — Stopping/starting processes
— Requesting memory — Setting a timer

— Setting/changing access permissions

* You need a system call to:
— Open afile
— Get data from the network
— Kill a process

* You do not need a system call to:
— Replace data in a string
— Create an object (instance of a class)
— Call a function

.

February 14, 2015 © 2014-2015 Paul Krzyzanowski 3

-
System calls are made via traps

« System calls request operating system services

» Operating system code executes with the processor running in kernel
(also known as supervisor or privileged) mode

— Privileged mode gives the CPU the rights to:

« Execute special instructions
(change interrupt masks, set hardware timers, halt the processor)

« Access specific registers (e.g., private stack pointer)

« Change the memory map

» Access regions of memory that have been restricted for kernel access only
» Access the processor’s I/O ports (if the architecture has them)

« Atrap takes has one parameter: index into an Interrupt Vector Table
— The table is in memory that only the kernel can access
— All addresses in the table go to well-defined entry points in the OS

.

February 14, 2015 © 2014-2015 Paul Krzyzanowski

Variations on software interrupts

» “Classic” system call mechanism in Intel’'s x86 architecture
— Use INT 80h (software interrupt) instruction to invoke a system call

— On Intel architectures, if the privilege level changed, the processor switches
to a different stack

* For security: don’t leave kernel crud on a stack that the user might inspect
« What happens:

— Various registers are saved in temporary space in the processor (flags, instruction pointer,
stack segment, etc.)

— The new stack pointer is loaded

— The saved registers are pushed on the stack

— Any error code indicating the nature of the trap is pushed on the stack
— Flags are adjusted

— Execution continues

February 14, 2015 © 2014-2015 Paul Krzyzanowski 5

-
Variations on software interrupts

« Call gate (Intel x86 architecture)

— Operating system sets up a “call gate”

— The user program executes a “CALL FAR” instruction
(essentially just a regular subroutine call instruction) with a specific segment

number

— The CPU checks if the segment number is a valid “gate”

— If so, it loads the appropriate instruction pointer and elevates the privilege
level

— Unique to Intel architecture — nobody else used memory segments
* Hence, portable operating systems avoided this

.

February 14, 2015 © 2014-2015 Paul Krzyzanowski 6

-
Variations on software interrupts

o« SYSCALL/SYSRET (Intel) or SYSENTER/SYSEXIT (AMD)
Instructions

— Faster mechanism than interrupts or call gates

— Target address is in a CPU register
= no need to access memory to do a table lookup

» Linux does a test to check which mechanisms exist before making a
system call:
— Check if syscall exists (Intel architecture)
— Check if sysenter exists (AMD architecture)
— Otherwise use INT 80 (works on even the oldest processors)

* No matter what is used, the effect is the same:
— Branch to a well-known location & run in privileged mode

.

February 14, 2015 © 2014-2015 Paul Krzyzanowski

-
System calls have parameters

« A software interrupt (trap) has one parameter: the trap #

* There are more system calls than interrupt vectors
— All system calls share the same trap # (the same entry point)
— Use one vector & have the system call number be a parameter

— The operating system can jump to the right place based on sys call #
» Dispatch table

« System calls need to pass multiple parameters
— E.g., read needs to identify the open file, starting byte, number of bytes
— There are three ways to pass these parameters
1. In the processor’s registers

2. On the stack
3. In some memory location whose address is passed to the kernel

.

February 14, 2015 © 2014-2015 Paul Krzyzanowski

[

Making system calls programmer-friendly

« System calls are made to look like function calls

« As a programmer, you do not want to
— Copy parameters into some special place
— know the system call number
— invoke a software interrupt
— figure out how to copy any return data back

« System call library
— A user-level library that is linked with your program
— Provides a functional interface to system calls
— Handles the work of passing parameters and getting results

.

February 14, 2015 © 2014-2015 Paul Krzyzanowski

.

System calls

Entry Return from system call or

Trap to system call handler Interrupt

— Save state — Check for signals to the process

_ Verify parameters are in a valid . i(;d(l):(:s appropriate handler if signal is not

address
— Check if another process should run

» Context switch to let the other process
— Call the function that implements the run
system call « Put our process on a ready list

 |f the function cannot be satisfied
immediately then

— Put process on a blocked list

— Context switch to let another ready ~— Restore user process state
process run

— Copy them to kernel address space

— Calculate time spent in the call for
profiling/accounting

— Return from interrupt

February 14, 2015 © 2014-2015 Paul Krzyzanowski 10

System call walk-through

1. User calls a system call library 3. The operating system kernel code
function (e.g., open) IS now run
— Compiler generates code to push — Save registers
parameters on the stack & call the — Look up the address of system call #5
function — Call the system call handler, which
2. The library function is run processes the request
_ Compiler generates code to save — Return the re_sult of the system call in
registers the %eax register
— System call number for the open — Restore other registers
system call (5) is placed in register — Return from interrupt
%eax

4. Back to the library function
— Copy results (if necessary)
— Restore registers (except for return)
— Return value to the caller

— Other parameters go in registers
%ebx, %ecx, and %edx

— Trap to the OS

Note: This is an example using Linux and an x86 architecture. x86-64 uses the 64-bit
version of the eax register: rax. Other processors will use totally different registers.
Other operating systems may use a different entry point.

February 14, 2015 © 2014-2015 Paul Krzyzanowski 11

_

The End

February 14, 2015

© 2014-2015 Paul Krzyzanowski

12

